精英家教网 > 高中数学 > 题目详情
已知函数y=x+有如下性质:如果常数a>0,那么该函数在(0,上是减函数,在,+∞)上是增函数.
(1)如果函数y=x+在(0,4)上是减函数,在(4,+∞)上是增函数,求实常数b的值;
(2)设常数c∈1,4,求函数f(x)=x+(1≤x≤2)的最大值和最小值.
【答案】分析:(1)根据函数y=x+的性质可知=4,从而可求出b的值;
(2)讨论是否在定义域内,从而可求出函数的最小值,讨论c可确定f(1)与f(2)的大小,从而求出函数的最大值.
解答:解:(1)由函数y=x+的性质知:y=x+在(0,)上是减函数,在(,+∞)上是增函数,
=4,∴2b=16=24,∴b=4.
(2)∵c∈(1,4),∴∈1,2.
又∵f(x)=x+在(0,)上是减函数,在(,+∞)上是增函数,
∈[1,2]时,当x=时,函数取得最小值2 
又f(1)=1+c,f(2)=2+
f(2)-f(1)=1-
当c∈(1,2)时,f(2)-f(1)>0,f(2)>f(1),
此时f(x)的最大值为f(2)=2+
当c=2时,f(2)-f(1)=0,f(2)=f(1),
此时f(x)的最大值为f(2)=f(1)=3.
当c∈(2,4时,f(2)-f(1)<0,f(2)<f(1),
此时f(x)的最大值为f(1)=1+c.
综上所述,函数f(x)的最小值为2
当c∈(1,2)时,函数f(x)的最大值为2+
当c=2时,函数f(x)的最大值为3;
当c∈(2,4)时,函数f(x)的最大值为1+c.
点评:本题主要考查了新定义,以及函数的最大值和最小值,同时考查了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•武昌区模拟)已知点P在半径为1的半圆周上沿着A→P→B路径运动,设弧   的长度为x,弓形面积为f(x)(如图所示的阴影部分),则关于函数y=f(x)的有如下结论:
①函数y=f(x)的定义域和值域都是[0,π];
②如果函数y=f(x)的定义域R,则函数y=f(x)是周期函数;
③如果函数y=f(x)的定义域R,则函数y=f(x)是奇函数;
④函数y=f(x)在区间[0,π]是单调递增函数.
以上结论的正确个数是(  )

查看答案和解析>>

科目:高中数学 来源:湖北省武汉市武昌区2012届高三5月调研考试数学文科试题 题型:013

已知点P在半径为1的半圆周上沿着A→P→B路径运动,设弧的长度为x,弓形面积为f(x)(如图所示的阴影部分),则关于函数y=f(x)的有如下结论:

①函数y=f(x)的定义域和值域都是[0,π];

②如果函数y=f(x)的定义域R,则函数y=f(x)是周期函数;

③如果函数y=f(x)的定义域R,则函数y=f(x)是奇函数;

④函数y=f(x)在区间[0,π]上是单调递增函数.

以上结论的正确个数是

[  ]

A.1

B.2

C.3

D.4

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知点P在半径为1的半圆周上沿着A→P→B路径运动,设弧  的长度为x,弓形面积为f(x)(如图所示的阴影部分),则关于函数y=f(x)的有如下结论:
①函数y=f(x)的定义域和值域都是[0,π];
②如果函数y=f(x)的定义域R,则函数y=f(x)是周期函数;
③如果函数y=f(x)的定义域R,则函数y=f(x)是奇函数;
④函数y=f(x)在区间[0,π]是单调递增函数.
以上结论的正确个数是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

科目:高中数学 来源:2012年湖北省武汉市武昌区高三五月调考数学试卷(文科)(解析版) 题型:选择题

已知点P在半径为1的半圆周上沿着A→P→B路径运动,设弧   的长度为x,弓形面积为f(x)(如图所示的阴影部分),则关于函数y=f(x)的有如下结论:
①函数y=f(x)的定义域和值域都是[0,π];
②如果函数y=f(x)的定义域R,则函数y=f(x)是周期函数;
③如果函数y=f(x)的定义域R,则函数y=f(x)是奇函数;
④函数y=f(x)在区间[0,π]是单调递增函数.
以上结论的正确个数是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案