已知函数
的图象过点
,且在
内单调递减,在
上单调递增。
(1)求
的解析式;
(2)若对于任意的
,不等式
恒成立,试问这样的
是否存在.若存在,请求出
的范围,若不存在,说明理由;
解: (1)∵
,
由题设可知:
即![]()
sinθ≥1, ∴sinθ=1.
从而a= ,∴f(x)= x3+x2-2x+c,而又由f(1)= 得c=.∴f(x)= x3+x2-2x+即为所求.
(2)由
=(x+2)(x-1),
易知f(x)在(-∞,-2)及(1,+∞)上均为增函数,在(-2,1)上为减函数.
①当m>1时,f(x)在[m,m+3]上递增,故f(x)max=f(m+3), f(x)min=f(m)
由f(m+3)-f(m)= (m+3)3+(m+3)2-2(m+3)-m3-m2+2m=3m2+12m+≤,
得-5≤m≤1.这与条件矛盾.
② 当0≤m≤1时,f(x)在[m,1]上递减, 在[1,m+3]上递增
∴f(x)min=f(1), f(x)max=max{ f(m),f(m+3) },
又f(m+3)-f(m)= 3m2+12m+=3(m+2)2->0(0≤m≤1)
∴f(x)max= f(m+3)∴|f(x1)-f(x2)|≤f(x)max-f(x)min= f(m+3)-f(1)≤f(4)-f(1)= 恒成立.
故当0≤m≤1时,原不等式恒成立.
综上,存在m且m∈[0,1]附合题意.
科目:高中数学 来源: 题型:
(05年福建卷文)(12分)
已知函数
的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为
.
(Ⅰ)求函数
的解析式;
(Ⅱ)求函数
的单调区间.
查看答案和解析>>
科目:高中数学 来源:2015届四川省资阳市高一上学期期末质量检测数学试卷(解析版) 题型:解答题
(本小题满分12分)
已知函数
的图象过点
,且图象上与点P最近的一个最低点是
.
(Ⅰ)求
的解析式;
(Ⅱ)若
,且
为第三象限的角,求
的值;
(Ⅲ)若
在区间
上有零点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2013届福建省高二下学期第一次阶段考数学理科试卷 题型:解答题
已知函数
的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为
.
(1)求函数
的解析式; (2)求函数
的单调区间
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com