精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax3+x2-x (a∈R且a≠0)

(1)若函数f(x)在(2,+∞)上存在单调递增区间,求a的取值范围.

(2)证明:当a>0时,函数在f(x)在区间()上不存在零点

(Ⅰ)(Ⅱ)见解析


解析:

(1)因为f′(x)=3ax2+2x-1,依题意存在(2,+∞)的非空子区间使3ax2+2x-1>0成立,即 在x∈(2,+∞)某子区间上恒成立,令h(x)=,求得h(x)的最小值为,故

(2)由已知a>0

令f′(x)=3ax2+2x-1>0

故f(x)在区间()上是减函数, 即f(x)在区间()上恒大于零。故当a>0时,函数在f(x)在区间()上不存在零点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案