【题目】国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30人或30人以下,每人需交费用为900元;若旅行团人数多于30人,则给予优惠:每多1人,人均费用减少10元,直到达到规定人数75人为止.旅行社需支付各种费用共计15000元.
(1)写出每人需交费用y关于人数x的函数;
(2)旅行团人数为多少时,旅行社可获得最大利润?
【答案】
(1)解:当0<x≤30时,y=900;
当30<x≤75,y=900﹣10(x﹣30)=1200﹣10x;
即 ![]()
(2)解:设旅行社所获利润为S元,则
当0<x≤30时,S=900x﹣15000;
当30<x≤75,S=x(1200﹣10x)﹣15000=﹣10x2+1200x﹣15000;
即 ![]()
因为当0<x≤30时,S=900x﹣15000为增函数,
所以x=30时,Smax=12000;
当30<x≤75时,S=﹣10x2+1200x﹣15000=﹣10(x﹣60)2+21000,
即x=60时,Smax=21000>12000.
所以当旅行社人数为60时,旅行社可获得最大利润
【解析】(1)根据自变量x的取值范围,分0<x≤30或30<x≤75列出函数解析式即可;(2)利用(1)中的函数解析式,结合自变量的取值范围和配方法,分段求最值,即可得到结论.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线
的参数方程为
(
为参数),圆
的极坐标方程为
.
(1)求直线
的普通方程与圆
的直角坐标方程;
(2)设圆
与直线
交于
两点,若点
的直角坐标为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位组织职工去某地参观学习,需包车前往,甲车队说:“如果领队买一张全票,其余人可享受7折优惠。”乙车队说:“你们属于团体票,按原价的7.5折优惠。”这两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队的收费哪家更优惠。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态,一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:车辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
租用单车数量 | 2 | 3 | 4 | 5 | 8 |
每天一辆车平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:
,方程乙:
.
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注:
,
称为相应于点
的残差(也叫随机误差));
租用单车数量 | 2 | 3 | 4 | 5 | 8 | |
每天一辆车平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 | 2.4 | 2.1 | 1.6 | ||
残差 | 0 |
| 0.1 | |||
模型乙 | 估计值 | 2.3 | 2 | 1.9 | ||
残差 | 0.1 | 0 | 0 | |||
②分别计算模型甲与模型乙的残差平方和
及
,并通过比较
,
的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放,根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6,问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入—成本).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态,一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:车辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
租用单车数量 | 2 | 3 | 4 | 5 | 8 |
每天一辆车平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:
,方程乙:
.
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注:
,
称为相应于点
的残差(也叫随机误差));
租用单车数量 | 2 | 3 | 4 | 5 | 8 | |
每天一辆车平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 | 2.4 | 2.1 | 1.6 | ||
残差 | 0 |
| 0.1 | |||
模型乙 | 估计值 | 2.3 | 2 | 1.9 | ||
残差 | 0.1 | 0 | 0 | |||
②分别计算模型甲与模型乙的残差平方和
及
,并通过比较
,
的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放,根据市场调查,这个城市投放8千辆时,该公司平均一辆单一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6,问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入—成本).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,定点
为圆上一动点,线段
的垂直平分线交线段
于点
,设点
的轨迹为曲线
;
(Ⅰ)求曲线
的方程;
(Ⅱ)若经过
的直线
交曲线于不同的两点
,(点
在点
,
之间),且满足
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据“2015年国民经济和社会发展统计公报” 中公布的数据,从2011 年到2015 年,我国的
第三产业在
中的比重如下:
年份 |
|
|
|
|
|
年份代码 |
|
|
|
|
|
第三产业比重 |
|
|
|
|
|
(1)在所给坐标系中作出数据对应的散点图;
(2)建立第三产业在
中的比重
关于年份代码
的回归方程;
(3)按照当前的变化趋势,预测2017 年我国第三产业在
中的比重.
附注: 回归直线方程
中的斜率和截距的最小二乘估计公式分别为:
,
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an},满足d>0,且a1+a2+a3=9,a1a3=5
(1)求{an}的通项公式;
(2)若数列{bn}满足bn=
,Sn为数列{bn}的前n项和,证明:Sn<3.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com