精英家教网 > 高中数学 > 题目详情
设实数x,y满足x+y=2,则2x+2y的最小值是(  )
A、8
B、4
C、2
2
D、2
42
分析:由基本不等式可得 2x+2y≥2
2x2y 
=2
22
,从而得到2x+2y的最小值是 4.
解答:解:∵实数x,y满足x+y=2,则2x+2y≥2
2x2y 
=2
22
=4,当且仅当2x=2y 时,等号成立.
故选B.
点评:本题考查基本不等式的应用,注意基本不等式的使用条件,并注意检验等号成立的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设实数x,y满足 
x-y-2≤0
x+2y-5≥0
y-2≤0
,则u=
x2+y2
xy
的取值范围是(  )
A、[2,
5
2
]
B、[
5
2
10
3
]
C、[2,
10
3
]
D、[
1
4
,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足
x≤3
x-y+2≥0
x+y-4≥0
,则x2+y2的取值范围是
[8,34]
[8,34]

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足
x-y-2≤0
x+2y-4≥0
2y-3≤0
,则
y
x
的最大值是
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足
x-y-2≤0
x+2y-4≥0
2y-3≤0
,则z=
x
y
的最小值是
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海一模)设实数x,y满足
x+2y-4≤0
x-y≥0
y>0
,则x-2y的最大值为
4
4

查看答案和解析>>

同步练习册答案