【题目】已知函数
为R上的偶函数,当
时
当
时,
且
对
恒成立,函数
的一个周期内的图像与函数
的图像恰好有两个公共点,则
( )
A.
B.
C.
D. ![]()
【答案】A
【解析】
先
对
恒成立得
恒成立,由当
时,
;当
时,
,得函数
在
上单调递减,在
单调递增,由函数
为R上的偶函数,且
时,
,可得函数
在
上单调递减,在
单调递增,且图像关于y轴对称,最小值为
,又因为
的一个周期内的图像与函数
的图像恰好有两个公共点,且
最大值为1,所以
的最小正周期
,且过点
,然后可求出
解析式.
解:因为
对
恒成立,且
的最大值为1
所以
恒成立
又当
时,
;当
时,![]()
所以函数
在
上单调递减,在
单调递增
又因为函数
为R上的偶函数,且
时,![]()
所以函数
在
上单调递减,在
单调递增,且图像关于y轴对称
所以函数
的最小值为![]()
因为函数
最大值为1
且
与
的图像恰好有两个公共点,
则这两个公共点必在
和
处
所以函数
的最小正周期
,所以![]()
又
过点
,即
,所以![]()
所以![]()
故选:A
科目:高中数学 来源: 题型:
【题目】已知
,
是椭圆
的左、右焦点,椭圆
过点
.
(1)求椭圆
的方程;
(2)过点
的直线
(不过坐标原点)与椭圆
交于
,
两点,且点
在
轴上方,点
在
轴下方,若
,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着互联网的兴起,越来越多的人选择网上购物.某购物平台为了吸引顾客,提升销售额,每年双十一都会进行某种商品的促销活动.该商品促销活动规则如下:①“价由客定”,即所有参与该商品促销活动的人进行网络报价,每个人并不知晓其他人的报价,也不知道参与该商品促销活动的总人数;②报价时间截止后,系统根据当年双十一该商品数量配额,按照参与该商品促销活动人员的报价从高到低分配名额;③每人限购一件,且参与人员分配到名额时必须购买.某位顾客拟参加2019双十一该商品促销活动,他为了预测该商品最低成交价,根据该购物平台的公告,统计了最近5年双十一参与该商品促销活动的人数(见下表)
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份编号t | 1 | 2 | 3 | 4 | 5 |
参与人数(百万人) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)由收集数据的散点图发现,可用线性回归模型模拟拟合参与人数
(百万人)与年份编号
之间的相关关系.请用最小二乘法求
关于
的线性回归方程:
,并预测2019年双十一参与该商品促销活动的人数;
(2)该购物平台调研部门对2000位拟参与2019年双十一该商品促销活动人员的报价价格进行了一个抽样调查,得到如下的一份频数表:
报价区间(千元) |
|
|
|
|
|
|
频数 | 200 | 600 | 600 | 300 | 200 | 100 |
①求这2000为参与人员报价
的平均值
和样本方差
(同一区间的报价可用该价格区间的中点值代替);
②假设所有参与该商品促销活动人员的报价
可视为服从正态分布
,且
与
可分别由①中所求的样本平均值
和样本方差
估值.若预计2019年双十一该商品最终销售量为317400,请你合理预测(需说明理由)该商品的最低成交价.
参考公式即数据(i)回归方程:
,其中
,![]()
(ii)![]()
(iii)若随机变量
服从正态分布
,则
,
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从1到9的九个数字中取三个偶数四个奇数,试问:
(1)能组成多少个没有重复数字的七位数?
(2)在(1)中的七位数中三个偶数排在一起的有几个?
(3)在(1)中的七位数中,偶数排在一起、奇数也排在一起的有几个?
(4)在(1)中任意两偶然都不相邻的七位数有几个?
(答题要求:先列式,后计算 , 结果用具体数字表示.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
R.
(1)如果曲线
在x=1处的切线斜率为1,求实数
的值;
(2)若函数
的极小值不超过
,求实数
的最小值;
(3)对任意
[1,2],总存在
[4,8],使得
=
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为
=0.85x-85.71,则下列结论中不正确的是
A. y与x具有正的线性相关关系
B. 回归直线过样本点的中心(
,
)
C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg
D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在坐标原点,焦点在
轴上,左顶点为
,左焦点为
,点
在椭圆
上,直线
与椭圆
交于
,
两点,直线
,
分别与
轴交于点
,
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)以
为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记
表示
,
中的最大值,如![]()
.已知函数
,
.
(1)设
,求函数
在
上零点的个数;
(2)试探讨是否存在实数
,使得
对
恒成立?若存在,求
的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com