【题目】武汉市掀起了轰轰烈烈的“十日大会战”,要在10天之内,对武汉市民做一次全员检测,彻底摸清武汉市的详细情况.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有
份血液样本,有以下两种检验方式:
方案①:将每个人的血分别化验,这时需要验1000次.
方案②:按
个人一组进行随机分组,把从每组
个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这
个人的血就只需检验一次(这时认为每个人的血化验
次);否则,若呈阳性,则需对这
个人的血样再分别进行一次化验这样,该组
个人的血总共需要化验
次. 假设此次检验中每个人的血样化验呈阳性的概率为
,且这些人之间的试验反应相互独立.
(1)设方案②中,某组
个人中每个人的血化验次数为
,求
的分布列;
(2)设
. 试比较方案②中,
分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以减少多少次?(最后结果四舍五入保留整数)
【答案】(1)分布列见解析;(2)
,总次数为690次;
,总次数为604次;
,次数总为594次;减少406次
【解析】
(1)设每个人的血呈阴性反应的概率为
,可得
,再由相互独立事件的概率求法可得
个人呈阴性反应的概率为
,呈阳性反应的概率为
,随机变量
即可得出分布列.
(2)由(1)的分布列可求出数学期望,然后令
求出期望即可求解.
(1)设每个人的血呈阴性反应的概率为
,则
.
所以
个人的血混合后呈阴性反应的概率为
,呈阳性反应的概率为
,
依题意可知
,
所以
的分布列为:
(2)方案②中,结合(1)知每个人的平均化验次数为:![]()
所以当
时,
,
此时1000人需要化验的总次数为690次,
![]()
,此时1000人需要化验的总次数为604次,
时,
,此时1000人需要化验的次数总为594次,
即
时化验次数最多,
时次数居中,
时化验次数最少.
而采用方案①则需化验1000次,故在这三种分组情况下,相比方案①,
当
时化验次数最多可以平均减少1000-594=406次.
科目:高中数学 来源: 题型:
【题目】成都七中为了解班级卫生教育系列活动的成效,对全校40个班级进行了一次突击班级卫生量化打分检查(满分100分,最低分20分).根据检查结果:得分在
评定为“优”,奖励3面小红旗;得分在
评定为“良”,奖励2面小红旗;得分在
评定为“中”,奖励1面小红旗;得分在
评定为“差”,不奖励小红旗.已知统计结果的部分频率分布直方图如下图:
![]()
(1)依据统计结果的部分频率分布直方图,求班级卫生量化打分检查得分的中位数;
(2)学校用分层抽样的方法,从评定等级为“优”、“良”、“中”、“差”的班级中抽取10个班级,再从这10个班级中随机抽取2个班级进行抽样复核,记抽样复核的2个班级获得的奖励小红旗面数和为
,求
的分布列与数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新能源汽车已经走进我们的生活,逐渐为大家所青睐.现在有某品牌的新能源汽车在甲市进行预售,预售场面异常火爆,故该经销商采用竞价策略基本规则是:①竞价者都是网络报价,每个人并不知晓其他人的报价,也不知道参与竞价的总人数;②竞价采用“一月一期制”,当月竞价时间截止后,系统根据当期汽车配额,按照竞价人的出价从高到低分配名额.某人拟参加2020年6月份的汽车竞价,他为了预测最低成交价,根据网站的公告,统计了最近5个月参与竞价的人数(如下表)
月份 | 2020.01 | 2020.02 | 2020.03 | 2020.04 | 2020.05 |
月份编号 | 1 | 2 | 3 | 4 | 5 |
竞拍人数 | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)由收集数据的散点图发现,可用线性回归模型拟合竞价人数y(万人)与月份编号t之间的相关关系.请用最小二乘法求y关于t的线性回归方程:
,并预测2020年6月份(月份编号为6)参与竞价的人数;
(2)某市场调研机构对200位拟参加2020年6月份汽车竞价人员的报价进行了一个抽样调查,得到如表所示的频数表:
报价区间(万元) |
|
|
|
|
|
|
频数 | 20 | 60 | 60 | 30 | 20 | 10 |
(i)求这200位竞价人员报价的平均值
和样本方差s2(同一区间的报价用该价格区间的中点值代替)
(ii)假设所有参与竞价人员的报价X可视为服从正态分布
且μ与σ2可分别由(i)中所示的样本平均数
及s2估计.若2020年月6份计划提供的新能源车辆数为3174,根据市场调研,最低成交价高于样本平均数
,请你预测(需说明理由)最低成交价.
参考公式及数据:
①回归方程
,其中![]()
②![]()
③若随机变量X服从正态分布
则![]()
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
年
月
日,我国开始施行《个人所得税专项附加扣除操作办法》,附加扣除的专项包括子女教育、继续教育、大病医疗、住房贷款利息、住房租金、赡养老人.某单位有老年员工
人,中年员工
人,青年员工
人,现采用分层抽样的方法,从该单位员工中抽取
人,调查享受个人所得税专项附加扣除的情况,并按照员工类别进行各专项人数汇总,数据统计如表:
专项员工人数 | 子女教育 | 继续教育 | 大病医疗 | 住房贷款利息 | 住房租金 | 赡养老人 |
老员工 |
|
|
|
|
|
|
中年员工 |
|
|
|
|
|
|
青年员工 |
|
|
|
|
|
|
(Ⅰ)在抽取的
人中,老年员工、中年员工、青年员工各有多少人;
(Ⅱ)从上表享受住房贷款利息专项扣除的员工中随机选取
人,记
为选出的中年员工的人数,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的短轴长为2,离心率
.过椭圆的右焦点作直线l(不与
轴重合)与椭圆
交于不同的两点
,
.
(1)求椭圆
的方程;
(2)试问在
轴上是否存在定点
,使得直线
与直线
恰好关于
轴对称?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥
中,底面
为直角梯形,
,
,
,
为线段
的中点,
底面
,点
是棱
的中点,平面
与棱
相交于点
.
![]()
(1)求证:
;
(2)若
与
所成的角为
,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数).以坐标原点
为极点,
轴的非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的极坐标方程和曲线
的直角坐标方程;
(2)求曲线
与
交点的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
满足:对任意
,若
,则
,且
,设
,集合
中元素的最小值记为
;集合
,集合
中元素最小值记为
.
(1)对于数列:
,求
,
;
(2)求证:
;
(3)求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com