精英家教网 > 高中数学 > 题目详情

【题目】设函数,其中为正实数.

1)若的图象总在函数的图象的下方,求实数的取值范围;

2)设,证明:对任意,都有.

【答案】1 2)证明见解析

【解析】

(1)据题意可得在区间上恒成立,利用导数讨论函数的单调性,从而求出满足不等式的的取值范围;(2)不等式整理为,由(1)可知当时,,利用导数判断函数的单调性从而证明在区间上成立,从而证明对任意,都有.

1)解:因为函数的图象恒在的图象的下方,

所以在区间上恒成立.

,其中

所以,其中.

①当,即时,

所以函数上单调递增,

成立,满足题意.

②当,即时,设

图象的对称轴

所以上存在唯一实根,设为,则

所以上单调递减,此时,不合题意.

综上可得,实数的取值范围是.

2)证明:由题意得

因为当时,

所以.

,则

所以上单调递增,,即

所以,从而.

由(1)知当时,上恒成立,整理得.

,则要证,只需证.

因为,所以上单调递增,

所以,即上恒成立.

综上可得,对任意,都有成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB//CDABD=30°,AB=2CD=2AD=2,DE⊥平面ABCDEF//BD,且BD2EF

Ⅰ)求证:平面ADE⊥平面BDEF

Ⅱ)若二面角CBFD的大小为60°,求CF与平面ABCD所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】初中数学靠练,高中数学靠悟”.总结反思自己已经成为数学学习中不可或缺的一部分,为了了解总结反思对学生数学成绩的影响,某校随机抽取200名学生,抽到不善于总结反思的学生概率是0.6.

1)完成列联表(应适当写出计算过程);

2)试运用独立性检验的思想方法分析是否有的把握认为学生的学习成绩与善于总结反思有关.

统计数据如下表所示:

不善于总结反思

善于总结反思

合计

学习成绩优秀

40

学习成绩一般

20

合计

200

参考公式:其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.

1)根据条形统计图,估计本届高三学生本科上线率.

2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.

i)若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);

ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为,若2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围.

可能用到的参考数据:取.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线是由两个定点和点的距离之积等于的所有点组成的,对于曲线,有下列四个结论:①曲线是轴对称图形;②曲线上所有的点都在单位圆内;③曲线是中心对称图形;④曲线上所有点的纵坐标.其中,所有正确结论的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列满足:.的等差中项.又数列满足:.

1)求数列的通项公式;

2)若,且数列为等比数列,求的值;

3)若,且为数列的最小项,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】德国著名数学家狄利克雷(Dirichlet,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数” 其中R为实数集,Q为有理数集.则关于函数有如下四个命题,正确的为( )

A.函数是偶函数

B.,,恒成立

C.任取一个不为零的有理数T,对任意的恒成立

D.不存在三个点,,,使得为等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于正整数,如果个整数满足

,则称数组的一个正整数分拆”.均为偶数的正整数分拆的个数为均为奇数的正整数分拆的个数为.

()写出整数4的所有正整数分拆”;

()对于给定的整数,设的一个正整数分拆,且,求的最大值;

()对所有的正整数,证明:;并求出使得等号成立的的值.

(:对于的两个正整数分拆,当且仅当时,称这两个正整数分拆是相同的.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)当时,若恰有一个零点,求实数的取值范围;

2)当时,恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案