【题目】在平面直角坐标系
中,椭圆
的参数方程为
为参数).以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
,直线
经过椭圆
的右焦点
.
(1)求实数
的值;
(2)设直线
与椭圆
相交于
两点,求
的值.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知椭圆
经过点
,且其左右焦点的坐标分别是
,
.
(1)求椭圆
的离心率及标准方程;
(2)设
为动点,其中
,直线
经过点
且与椭圆
相交于
,
两点,若
为
的中点,是否存在定点
,使
恒成立?若存在,求点
的坐标;若不存在,说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M,N均在直线x=5上.圆弧C1的圆心是坐标原点O,半径为13;圆弧C2过点A(29,0).
![]()
(1)求圆弧C2的方程.
(2)曲线C上是否存在点P,满足PA=
PO?若存在,指出有几个这样的点;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左,右焦点分别为F1, F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M.
(1)求点M的轨迹
的方程;
(2)设
与x轴交于点Q,
上不同于点Q的两点R、S,且满足
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某运动员射击一次所得环数
的分布列如下:
| 8 | 9 | 10 |
| 0.4 | 0.4 | 0.2 |
现进行两次射击,且两次射击互不影响,以该运动员两次射击中最高环数作为他的成绩,记为
.
(1)求该运动员两次命中的环数相同的概率;
(2)求
的分布列和数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业的某种产品中抽取
件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
![]()
(Ⅰ)求这
件产品质量指标值的样本平均数
和样本方差
(同一组数据用该区间的中点值作代表,记作
,
);
(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值
服从正态分布
,其中
近似为样本平均数
,
近似为样本方差
.
(i)若使
的产品的质量指标值高于企业制定的合格标准,则合格标准的质量指标值大约为多少?
(ii)若该企业又生产了这种产品
件,且每件产品相互独立,则这
件产品质量指标值不低于
的件数最有可能是多少?
附:参考数据与公式:
,
;若
,则①
;②
;③
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂修建一个长方体无盖蓄水池,其容积为6400立方米,深度为4米.池底每平方米的造价为120元,池壁每平方米的造价为100元.设池底长方形的长为x米.
(Ⅰ)求底面积,并用含x的表达式表示池壁面积;
(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)若
,
且
,则
的取值范围是______.
(2)若
,
,且
,则
的取值范围是______.
(3)已知
,且
,则
的最小值是______.
(4)已知实数
,
,若
,
,且
,则
的最小值______.
(5)已知实数
,
,若
,
,则
的最小值______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知P(
,1),Q(cosx,sinx),O为坐标原点,函数f(x)
.
(1)求f(x)的解析式及最小正周期;
(2)若A为△ABC的内角,f(A)=4,BC=3,△ABC的面积为
,求AB+AC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com