精英家教网 > 高中数学 > 题目详情

已知定义域为R的函数是奇函数.
(1)求a的值;(2)判断的单调性(不需要写出理由);
(3)若对任意的,不等式恒成立,求的取值范围.

解:(1)函数的定义域为R,因为是奇函数,所以
,故
(另解:由是R上的奇函数,所以,故
再由,通过验证来确定的合理性)
(2)解法一:由(1)知
由上式易知在R上为减函数,
又因是奇函数,从而不等式等价于
在R上为减函数,由上式得:
即对一切从而
解法二:由(1)知又由题设条件得:

整理得,因底数4>1,故
上式对一切均成立,从而判别式

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

.已知函数
(Ⅰ)若函数上为增函数,求正实数的取值范围;
( Ⅱ) 设,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数,且.
(1)判断的奇偶性并说明理由;    
(2)判断在区间上的单调性,并证明你的结论;
(3)若在区间上,不等式恒成立,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a>0且a≠1,
(1)判断函数f(x)是否有零点,若有求出零点;
(2)判断函数f(x)的奇偶性;
(3)讨论f(x)的单调性并用单调性定义证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,常数.
(1)若,判断在区间上的单调性,并加以证明;
(2)若在区间上的单调递增,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函的定义域;
(2)求证:函数是增函数;
(3)求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在R上的偶函数,当时,
(1)写出的解析式;
(2)画出函数的图像;
(3)写出上的值域

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知函数在定义域上为增函数,且满足, .
(Ⅰ) 求的值;         
(Ⅱ)  解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)函数f(x)=loga(x2-4ax+3a2), 0<a<1, 当x∈[a+2,a+3]时,恒有|f(x)|≤1,试确定a的取值范围.

查看答案和解析>>

同步练习册答案