科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
(07年上海卷理)(18分)
若有穷数列
(
是正整数),满足
即
(
是正整数,且
),就称该数列为“对称数列”。
(1)已知数列
是项数为7的对称数列,且
成等差数列,
,试写出
的每一项
(2)已知
是项数为
的对称数列,且
构成首项为50,公差为
的等差数列,数列
的前
项和为
,则当
为何值时,
取到最大值?最大值为多少?
(3)对于给定的正整数
,试写出所有项数不超过
的对称数列,使得
成为数列中的连续项;当
时,试求其中一个数列的前2008项和![]()
查看答案和解析>>
科目:高中数学 来源:2013-2014学年湖北省等八校高三第一次联考文科数学试卷(解析版) 题型:解答题
若数列
满足
,则称数列
为“平方递推数列”.已知数列
中,
,点
在函数
的图象上,其中
为正整数.
(Ⅰ)证明数列
是“平方递推数列”,且数列
为等比数列;
(Ⅱ)设(Ⅰ)中“平方递推数列”的前
项积为
,即
,求
;
(Ⅲ)在(Ⅱ)的条件下,记
,求数列
的前
项和
,并求使
的
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分7分,第3小题满分5分.
在数列
(p为非零常数),则称数列
为“等差比”数列,p叫数列
的“公差比”.
已知数列
满足
,判断该数列是否为等差比数列?
已知数列![]()
是等差比数列,且
公差比
,求数列
的通项公式
;
(3)记
为(2)中数列
的前n项的和,证明数列![]()
也是等差比数列,并求出公差比p的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com