精英家教网 > 高中数学 > 题目详情
设M是椭圆
x2
4
+
y2
3
=1
上的动点,A1和A2分别是椭圆的左、右顶点,则
MA1
MA2
的最小值等于.(  )
分析:设M(x0,y0),则根据向量的坐标表示写出向量
MA1
MA2
的坐标,再结合向量的数量积将
MA1
MA2
表示成x0的二次函数的形式,结合函数的性质求出
MA1
MA2
的最小值.
解答:解:设M(x0,y0),则
MA1
=(-2-x0,-y0),
MA2
=(2-x0,-y0)
MA1
MA2
=x02+y02-4=x02+(3-
3
4
x02)-4=
1
4
x02-1

显然当x0=0时,
MA1
MA2
取最小值为-1.
故选B.
点评:本小题主要考查二次函数单调性的应用、椭圆的简单性质、平面向量数量积的运算等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在A,B,C,D四小题中只能选做2题,每题10分,共计20分.
A、如图,AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求证:PE是⊙O的切线.
B、设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程.
C、已知某圆的极坐标方程为:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)将极坐标方程化为普通方程;并选择恰当的参数写出它的参数方程;
(Ⅱ)若点P(x,y)在该圆上,求x+y的最大值和最小值.
D、若关于x的不等式|x+2|+|x-1|≥a的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2分别是椭圆
x2
4
+y2=1的左、右焦点.
(1)若P是该椭圆上的一个动点,求向量乘积
PF1
PF2
的取值范围;
(2)设过定点M(0,2)的直线l与椭圆交于不同的两点M、N,且∠MON为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
(3)设A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.求四边形AEBF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)如图,已知椭圆C:
x2
4
+y2=1
,A、B是四条直线x=±2,y=±1所围成的两个顶点.
(1)设P是椭圆C上任意一点,若
OP
=m
OA
+n
OB
,求证:动点Q(m,n)在定圆上运动,并求出定圆的方程;
(2)若M、N是椭圆C上两个动点,且直线OM、ON的斜率之积等于直线OA、OB的斜率之积,试探求△OMN的面积是否为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,双曲线C1
x2
4
-
y2
b2
=1
与椭圆C2
x2
4
+
y2
b2
=1
(0<b<2)的左、右顶点分别为A1、A2第一象限内的点P在双曲线C1上,线段OP与椭圆C2交于点A,O为坐标原点.
(I)求证:
kAA1+kAA2
kPA1+kPA2
为定值(其中kAA1表示直线AA1的斜率,kAA2等意义类似);
(II)证明:△OAA2与△OA2P不相似.
(III)设满足{(x,y)|
x2
4
-
y2
m2
=1
,x∈R,y∈R}⊆{(x,y)|
x2
4
-
y2
3
>1
,x∈R,y∈R} 的正数m的最大值是b,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆一模)已知抛物线y2=2px(p>0)的焦点为椭圆
x2
4
+
y2
3
=1d的右焦点,点A、B为抛物线上的两点,O是抛物线的顶点,OA⊥OB.
(I)求抛物线的标准方程;
(Ⅱ)求证:直线AB过定点M(4,0);
(III)设弦AB的中点为P,求点P到直线x-y=0的最小值.

查看答案和解析>>

同步练习册答案