如图,设抛物线
:
的焦点为
,准线为
,过准线
上一点
且斜率为
的直线
交抛物线
于
,
两点,线段
的中点为
,直线
交抛物线
于
,
两点.
(1)求抛物线
的方程及
的取值范围;
(2)是否存在
值,使点
是线段
的中点?若存在,求出
值,若不存在,请说明理由. ![]()
(1)
,
;(2)不存在.参考解析
解析试题分析:(1)由准线
上一点
,所以可以求得
的值,即可取得抛物线的方程.由于直线与抛物线有两个交点,所以联立方程消去y,需要判别式大于零即可得到k的取值范围,又由于k等于零时没有两个交点,所以应排除,即可得到结论.
(2)是否存在
值,使点
是线段
的中点.由直线AB的方程联立抛物线的方程,即可求得AB中点P的坐标.从而写出PF的方程再联立抛物线的方程,对比DE的中点是否与AB的中点相同.即可得到答案.
(1)由已知得
,∴
.∴抛物线方程为
. 2分
设
的方程为
,
,
,
,
,
由
得
. 4分
,解得
,注意到
不符合题意,
所以
. 5分
(2)不存在
值,使点
是线段
的中点.理由如下: 6分
有(1)得
,所以
,所以
,
,直线
的方程为
. 8分
由
得
,
. 10分
当点
为线段
的中点时,有
,即
,因为
,所以此方程无实数根.因此不存在
值,使点
是线段
的中点. 12分
考点:1.抛物线的性质.2.联立方程解方程组的思想.3.存在性的问题.
科目:高中数学 来源: 题型:解答题
已知椭圆C:
(
)的离心率为
,点(1,
)在椭圆C上.
(1)求椭圆C的方程;
(2)若椭圆C的两条切线交于点M(4,
),其中
,切点分别是A、B,试利用结论:在椭圆
上的点(
)处的椭圆切线方程是
,证明直线AB恒过椭圆的右焦点
;
(3)试探究
的值是否恒为常数,若是,求出此常数;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
的离心率
,
.![]()
(1)求椭圆C的方程;
(2)如图,
是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交
轴于点N,直线AD交BP于点M。设BP的斜率为
,MN的斜率为
.证明:
为定值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
、
为椭圆
的左右焦点,点
为其上一点,且有![]()
.
(1)求椭圆
的标准方程;
(2)过
的直线
与椭圆
交于
、
两点,过
与
平行的直线
与椭圆
交于
、
两点,求四边形
的面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知圆E
,点
,P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(1)求动点Q的轨迹
的方程;
(2)点
,
,点G是轨迹
上的一个动点,直线AG与直线
相交于点D,试判断以线段BD为直径的圆与直线GF的位置关系,并证明你的结论.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知
,
,
,
分别是椭圆
的四个顶点,△
是一个边长为2的等边三角形,其外接圆为圆
.
(1)求椭圆
及圆
的方程;
(2)若点
是圆
劣弧
上一动点(点
异于端点
,
),直线
分别交线段
,椭圆
于点
,
,直线
与
交于点
.
(ⅰ)求
的最大值;
(ⅱ)试问:
,
两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
,过点
且离心率为
.
求椭圆
的方程;
已知
是椭圆
的左右顶点,动点
满足
,连接
角椭圆于点
,在
轴上是否存在异于点
的定点
,使得以
为直径的圆经过直线
和直线
的交点,若存在,求出
点,若不存在,说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线
的方程为
,过原点作斜率为
的直线和曲线
相交,另一个交点记为
,过
作斜率为
的直线与曲线
相交,另一个交点记为
,过
作斜率为
的直线与曲线
相交,另一个交点记为
,如此下去,一般地,过点
作斜率为
的直线与曲线
相交,另一个交点记为
,设点
(
).
(1)指出
,并求
与
的关系式(
);
(2)求
(
)的通项公式,并指出点列
,
,
,向哪一点无限接近?说明理由;
(3)令
,数列
的前
项和为
,试比较
与
的大小,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在坐标原点,焦点在
轴上的椭圆过点
,且它的离心率
.
(1)求椭圆的标准方程;
(2)与圆
相切的直线
交椭圆于
两点,若椭圆上一点
满足
,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com