精英家教网 > 高中数学 > 题目详情

已知点P (4,4),圆C: 与椭圆E:的一个公共点为A(3,1),F1,F2分别是椭圆的左、右焦点,直线与圆C相切。

(1)求m的值与椭圆E的方程;

(2)设D为直线PF1与圆C 的切点,在椭圆E上是否存在点Q ,使△PDQ是以PD为底的等腰三角形?若存在,请指出共有几个这样的点?并说明理由。

                           

 

【答案】

(1)m=1,椭圆E的方程为

(2)在椭圆上存在两个点Q,使得PDQ是以PD为底的等边三角形

【解析】解:(1)∵点A(3,1)在圆上,∴(3-m)2+1=5 又m<3    ∴m=1 ┉┉2分

设F1(-c,0),∵P(4,4)  直线PF1方程为4x-(4+c)y+4c=0    ---------3分

直线PF1与圆C相切,  c=4.――――-4分

椭圆E的方程为――――――――6分

(2)直线PF1方程为4x-8y+16=0,即x-2y+4=0

得切点D(0,2)―――――7分

P(4,4), 线段PD中点为M(2,3)―――――8分

椭圆右焦点为F2(4,0),  ―――10分

,线段PD垂直平分线的斜率为-2  ―――――――11分

线段PD的垂直平分线与椭圆有两个交点――――13分

在椭圆上存在两个点Q,使得PDQ是以PD为底的等边三角形―――14分

(或与过点M的椭圆右侧切线斜率比较说明;或用判别式)

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知点P(4,4),圆C:(x-m)2+y2=5(m<3)与椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(Ⅰ)求m的值与椭圆E的方程;
(Ⅱ)设Q为椭圆E上的一个动点,求
AP
AQ
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知点P(4,4),圆C:(x-m)2+y2=5(m<3)与椭圆E:
x2
a2
+
y2
b2
=1 (a>b>0)
有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(1)求直线PF1的方程;
(2)求椭圆E的方程;
(3)设Q为椭圆E上的一个动点,求证:以QF1为直径的圆与圆x2+y2=18相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知点P (4,4),圆C:(x-m)2+y2=5(m<3)与椭圆E:
x2
a2
+
y2
b2
=1
(a>0,b>0)的一个公共点为A(3,1),F1,F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(1)求m的值与椭圆E的方程.
(2)设D为直线PF1与圆C的切点,在椭圆E上是否存在点Q,使△PDQ是以PD为底的等腰三角形?若存在,请指出共有几个这样的点?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(4,4),圆C:(x-m)2+y2=5(m<3)与椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
有一个公共点A(3,1),F1,F2分别是椭圆的左右焦点,直线PF1与圆C相切.
(1)求m的值; 
(2)求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市长河高三市二测模考数学理卷 题型:解答题

(本小题满分15分)已知点P(4,4),圆C与椭圆E:

有一个公共点A(3,1),F1F2分别是椭圆的左.右焦点,直线PF1与圆C相切.

(1)求m的值与椭圆E的方程;

(2)设Q为椭圆E上的一个动点,求的范围.

 

 

查看答案和解析>>

同步练习册答案