精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥底面ABCD ,PA=AB=,点E是棱PB的中点。
(1)求直线AD与平面PBC的距离;
(2)若AD=,求二面角A-EC-D的平面角的余弦值。
解:(1) 如图,在矩形ABCD 中,ADBC,从而AD平面PBC ,故直线AD 与平面PBC 的距离为点A 到平面  PBC 的距离.
因PA⊥底面ABCD ,故PA ⊥AB ,
由PA=AB 知△PAB 为等腰直角三角形,
又点E 是棱PB 的中点,故AE ⊥PB.
又在矩形ABCD 中,BC ⊥AB ,而AB 是PB 在底面ABCD 内的射影,
由三垂线定理得BC⊥PB ,从而BC⊥平面PAB ,
故BC⊥AE,从而AE ⊥平面PBC ,
故AE 的长即为直线AD与平面PBC的距离.
在Rt △PAB 中,PA=AB=
所以
即直线AD与平面PBC的距离为
(2)过点D作DF⊥CE,交CE于F,过点F作FG⊥CE,交AC于G,
则∠DFG为所求二面角的平面角.
由(1)知BC⊥平面PAB,
又AD∥BC,得AD⊥平面PAB,
故AD⊥AE,从而DE=
在Rt△CBE中,CE=
所以△CDE为等边三角形,
故点F为CE的中点,且DF=CD·
因为AE⊥平面PBC,
故AE⊥CE,
又FG⊥CE,
所以,从而
且点G为AC的中点.连结DC.
则在Rt△ADC中,
所以cos∠DFG=
即二面角A-EC-D的平面角的余弦值为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案