精英家教网 > 高中数学 > 题目详情
已知函数f(x)是定义在R上的奇函数,且当x<0时,f(x)=-x2-2x-2.
(1)求出函数f(x)(x∈R)的解析式;
(2)写出函数f(x)(x∈R)的增区间;
(3)若函数g(x)=f(x)-2ax(x∈[1,2]),求函数的g(x)最小值.
分析:(1)根据奇函数的性质可得f(0)=0,再设x>0,根据函数的表达式结合函数为奇函数的性质得f(x)=-f(-x)=x2-2x+2,最后综合可得函数f(x)的表达式;
(2)由二次函数根据解析式即可求出单调区间;
(3)得到g(x)=x2-2x-2ax+2,问题即转化为求二次函数在给定区间上的最值问题.
解答:解:(1)1°因为函数是奇函数,所以x=0时,f(0)=0
2°设x>0,则-x<0,根据当x<0时,f(x)=-x2-2x-2,
得f(-x)=-x2+2x-2
∵f(x)为定义在R上的奇函数
∴f(x)=-f(-x)=x2-2x+2
综上:f(x)=
-x2-2x-2   x<0
0x=0
x2-2x+2        x>0

(2)函数f(x)(x∈R)的增区间为:(-∞,-1],[1,+∞)
(3)由于函数g(x)=f(x)-2ax=x2-2(1+a)x+2(x∈[1,2])
的图象开口向上,对称轴为x=1+a,
则①当a+1<1即a<0时,
函数g(x)在区间[1,2]上单调递增,
故ymin=g(1)=1-2a;
②当1≤a+1≤2即0≤a≤1时,
函数g(x)在区间[1,a+1]上单调递减,在区间(a+1,2]上单调递增,
故ymin=g(a+1)=2-(a+1)2
①当a+1>2即a>1时,
函数在区间[1,2]上单调递减,
故ymin=g(2)=2-4a,
综合可得,a<0时,ymin=1-2a
0≤a≤1时,ymin=2-(a+1)2
a>1时,ymin=2-4a.
点评:本题以二次函数和分段函数为例,着重考查了函数奇偶性的性质和奇偶性与单调性的综合等知识点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)计算:[f(1)]2-[g(1)]2
(2)证明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)图象上的两点,且x1+x2=1.
(1)求证:y1+y2为定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn
(3)在(2)的条件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn为数列{an}的前n项和.求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

同步练习册答案