【题目】下列关于公差d>0的等差数列{an}的四个命题:
p1:数列{an}是递增数列;
p2:数列{nan}是递增数列;
p3:数列
是递增数列;
p4:数列{an+3nd}是递增数列;
其中真命题是( )
A.p1 , p2
B.p3 , p4
C.p2 , p3
D.p1 , p4
【答案】D
【解析】解:∵对于公差d>0的等差数列{an},an+1﹣an=d>0,∴命题p1:数列{an}是递增数列成立,是真命题.
对于数列数列{nan},第n+1项与第n项的差等于 (n+1)an+1﹣nan=(n+1)d+an , 不一定是正实数,
故p2不正确,是假命题.
对于数列
,第n+1项与第n项的差等于
﹣
=
=
,不一定是正实数,
故p3不正确,是假命题.
对于数列数列{an+3nd},第n+1项与第n项的差等于 an+1+3(n+1)d﹣an﹣3nd=4d>0,
故命题p4:数列{an+3nd}是递增数列成立,是真命题.
故选D.
【考点精析】关于本题考查的命题的真假判断与应用和等差数列的性质,需要了解两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系;在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】等比数列{an}中,a1=2,a4=16.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若a3 , a5分别为等差数列{bn}的第4项和第16项,试求数列{bn}的前项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品A、B,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:
产品A(件) | 产品B(件) | ||
研制成本、搭载费用之和(万元) | 20 | 30 | 计划最大资金额300万元 |
产品重量(千克) | 10 | 5 | 最大搭载重量110千克 |
预计收益(万元) | 80 | 60 |
试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两人进行两种游戏,两种游戏规则如下:游戏Ⅰ:口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.游戏Ⅱ:口袋中有质地、大小完全相同的6个球,其中4个白球,2个红球,由裁判有放回的摸两次球,即第一次摸出记下颜色后放回再摸第二次,摸出两球同色算甲赢,摸出两球不同色算乙赢.
(Ⅰ)求游戏Ⅰ中甲赢的概率;
(Ⅱ)求游戏Ⅱ中乙赢的概率;并比较这两种游戏哪种游戏更公平?试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值
,这就是著名的“徽率”,如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出
的值为 ( )
(参考数据:
)
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正三棱锥P﹣ABC中,CM=2PM,CN=2NB,对于以下结论:
①二面角B﹣PA﹣C大小的取值范围是(
,π);
②若MN⊥AM,则PC与平面PAB所成角的大小为
;
③过点M与异面直线PA和BC都成
的直线有3条;
④若二面角B﹣PA﹣C大小为
,则过点N与平面PAC和平面PAB都成
的直线有3条.
正确的序号是 . ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知方程x2+y2﹣2x﹣4y+m=0.
(1)若此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y﹣4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数y=sinx的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移
个单位,得到的图象对应的解析式是( )
A.y=sin(2x+
)
B.y=sin(
x+
)
C.y=sin(
x+
)
D.y=sin(2x+
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com