解:(1)∵f(x)是奇函数且0∈R,∴f(0)=0,即
,∴b=1,
∴
,
又由f(1)=-f(-1)知,
,∴a=2,
∴
。
(2)f(x)在(-∞,+∞)上为减函数,
证明如下:设x1,x2∈(-∞,+∞)且x1<x2,则![]()
,
∵y=2x在(-∞,+∞)上为增函数且x1<x2,∴
且y=2x>0恒成立,
∴
,
∴f(x1)-f(x2)>0,
∴f(x)在(-∞,+∞)上为减函数。
(3)∵f(x)是奇函数,
∴f(x2-x)+f(2x2-t)<0等价于f(x2-x)<-f(2x2-t)=f(-2x2+t),
又∵f(x)是减函数,
∴x2-x>-2x2+t,即一切x∈R,3x2-x-t>0恒成立,
∴判别式△=1+12t<0,即t<
。
科目:高中数学 来源: 题型:
| -2x+a | 2x+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com