精英家教网 > 高中数学 > 题目详情
(2012•奉贤区一模)已知数列{an}的通项公式为an=|n-13|,那么满足ak+ak+1+…+ak+19=102的正整数k=
2或5
2或5
分析:利用等差数列的求和公式,可得{an}的前n项和Sn关于n的分段表达式.已知等式可化为ak+ak+1+…+ak+19=Sk+19-Sk-1=102,k是正整数,通过讨论k-1与13的大小,分别得到关于k的方程,解之即得满足条件的正整数k值.
解答:解:∵an=|n-13|,∴an=
13-n    n≤13
n-13    n>13

∴当n≤13时,{an}的前n项和为Sn=
25n-n2
2

当n>13时,{an}的前n项和为Sn=
1
2
(n2-25n+312)

满足ak+ak+1+…+ak+19=102,即ak+ak+1+…+ak+19=Sk+19-Sk-1=102,k是正整数
而Sk+19=
1
2
[(k+19)2-25(k+19)+312]
=
1
2
(k2+13k+198)
①当k-1≤13时,Sk-1=-
1
2
k2+k-13,
所以Sk+19-Sk-1=
1
2
(k2+13k+198)-(-
1
2
k2+
27
2
k-13)=102,解之得k=2或k=5
②当k-1>13时,Sk-1=
1
2
[(k-1)2-25(k-1)+312]
=
1
2
(k2-27k+338)
所以Sk+19-Sk-1=
1
2
(k2+13k+198)-
1
2
(k2-27k+338)=102,解之得k不是整数,舍去
综上所述,满足条件的k=2或5
故答案为:2或5
点评:本题给出一个与等差数列有关的数列,叫我们找出满足已知等式的最小正整数k,着重考查了等差数列的通项与求和公式,考查了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•奉贤区一模)复数z=
2-i
2+i
(i为虚数单位)在复平面内对应的点所在象限为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区一模)不等式
xx-1
>2
的解集是
(1,2)
(1,2)
  (用区间表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区一模)函数f(x)=
x+
1
2
,x∈[0,
1
2
)
2(1-x),x∈[
1
2
,1]
,定义f(x)的第k阶阶梯函数fk(x)=f(x-k)-
k
2
,x∈(k,k+1]
,其中k∈N*,f(x)的各阶梯函数图象的最高点Pk(ak,bk).
(1)直接写出不等式f(x)≤x的解;
(2)求证:所有的点Pk在某条直线L上.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区一模)设双曲线
x2
a2
-
y2
9
=1(a>0)
的渐近线方程为3x±2y=0,则正数a的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区一模)正数列{an}的前n项和Sn满足:rSn=anan+1-1,a1=a>0,常数r∈N.
(1)求证:an+2-an是一个定值;
(2)若数列{an}是一个周期数列,求该数列的周期;
(3)若数列{an}是一个有理数等差数列,求Sn

查看答案和解析>>

同步练习册答案