精英家教网 > 高中数学 > 题目详情
21.我们把由半椭圆 与半椭圆 合成的曲线称作“果圆”,其中.

如图,设点是相应椭圆的焦点,是“果圆” 与轴的交点,是线段的中点.

(1)若是边长为1的等边三角形,求该“果圆”的方程;

(2)设是“果圆”的半椭圆上任意一点.求证:当取得最小值时,在点处;

(3)若是“果圆”上任意一点,求取得最小值时点的横坐标.

解:(1)

于是

所求“果圆”方程为

(2)设,则

的最小值只能在处取到.

即当取得最小值时,在点处.                   

(3),且同时位于“果圆”的半椭圆和半椭圆上,所以,由(2)知,只需研究位于“果圆”的半椭圆上的情形即可.             

.

,即时,的最小值在时取到,

此时的横坐标是.                                       

,即时,由于时是递减的,的最小值在时取到,此时的横坐标是.                               

综上所述,若,当取得最小值时,点的横坐标是;若,当取得最小值时,点的横坐标是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(07年上海卷文)(14分)

我们把由半椭圆 与半椭圆 合成的曲线称作“果圆”,其中. 如图,设点是相应椭圆的焦点,是“果圆” 与轴的交点,是线段的中点.

(1)若是边长为1的等边三角形,求该“果圆”的方程;

(2)设是“果圆”的半椭圆上任意一点.求证:当取得最小值时,在点处;

    (3)若是“果圆”上任意一点,求取得最小值时点的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

我们把由半椭圆 与半椭圆 合成的曲线称作“果圆”,其中

如图,设点是相应椭圆的焦点,是“果圆” 与轴的交点,是线段的中点.

(1)若是边长为1的等边三角形,求该

“果圆”的方程;

(2)设是“果圆”的半椭圆

上任意一点.求证:当取得最小值时,在点处;

    (3)若是“果圆”上任意一点,求取得最小值时点的横坐标.

查看答案和解析>>

科目:高中数学 来源:2011年高中数学综合测试卷(选修1-1)(解析版) 题型:选择题

我们把由半椭圆与半椭圆合成的曲线称作“果圆”(其中a2=b2+c2,a>b>c>0).如图,设点F,F1,F2是相应椭圆的焦点,A1、A2和B1、B2是“果圆”与x,y轴的交点,若△FF1F2是边长为1的等边三角,则a,b的值分别为( )

A.
B.
C.5,3
D.5,4

查看答案和解析>>

科目:高中数学 来源:2011年湖南省益阳市沅江市高三质量检测试卷3(理科)(解析版) 题型:选择题

我们把由半椭圆与半椭圆合成的曲线称作“果圆”(其中a2=b2+c2,a>b>c>0).如图,设点F,F1,F2是相应椭圆的焦点,A1、A2和B1、B2是“果圆”与x,y轴的交点,若△FF1F2是边长为1的等边三角,则a,b的值分别为( )

A.
B.
C.5,3
D.5,4

查看答案和解析>>

同步练习册答案