精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P-ABC中,AB⊥BC,AB=BC,PA=AC,点O、D分别是AC、PC的中点,OP⊥平面ABC,
(1)求证:OD∥平面PAB;
(2)求直线PA与平面PBC所成角的正弦值;
(3)M是线段PA上的动点,当二面角M-BO-D的大小为45°时,求|PM|:|MA|的值.

【答案】分析:(1)建立空间直角坐标系,分别求出OD和PA的方向向量,利用共线向量证明线线平行后,再由线面平行的判定定理得到OD∥平面PAB;
(2)求出直线PA的方向向量和平面PBC的法向量,代入向量夹角公式,可得直线PA与平面PBC所成角的正弦值;
(3)设存在满足条件的点M,根据二面角M-BO-D的大小为45°,可得二面角的平面角∠MOD=45°,则在△AMO中,∠AMO=45°,∠MAO=60°,∠AOM=75°,AO=a,解△AMO,可得|PM|:|MA|的值.
解答:解:∵OP⊥平面ABC,OA=OC,AB=BC,
∴OA⊥OB,OA⊥OP,OB⊥OP.
以O为原点,OA,OB,OP为x,y,z轴,建立空间直角坐标系O-xyz(如图),
设AB=a,则A(a,0,0),B(0,a,0),C(-a,0,0),
设OP=h,则P(0,0,h).
(Ⅰ)∵D为PC的中点,
=(a,0,h)
又∵=(a,0,h).
=

即OD∥PA
又∵OD?平面PAB,PA?平面PAB
∴OD∥平面PAB.
(Ⅱ)∵PA=AC=a
∴h=a,P点坐标为(0,0,a),
=(a,0,-a),=B(0,a,-a),=(-a,0,-a),
设平面PBC的法向量为=(x,y,z),
,即
令z=1,则=(,1)
则直线PA与平面PBC所成角θ满足,
sinθ==
即直线PA与平面PBC所成角的正弦值为
(3)设存在满足条件的点M,
∵M点在线段PA上,故可设(0≤λ≤1)
∵BO⊥PAC,MO,DO?平面PAC,
∴∠MOD即为二面角M-BO-D的平面角
即∠MOD=45°
由(1)中OD∥PA,可得△AMO中,∠AMO=45°,∠MAO=60°,则∠AOM=75°,
由正弦定理及AO=a得
AM=a,PM=(-)a
∴|PM|:|MA|=a:(-)a=
点评:本题考查线面平行,考查线面夹角,考查存在性问题的探究,解题的关键是掌握线面平行的判定定理,正确运用向量的方法解决线面角、线线角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3.PB=2,PC=1.设M是底面ABC内一点,定义f(M)=(m,n,p),其中m、n、p分别是三棱锥M-PAB、三棱锥M-PBC、三棱锥M-PCA的体积.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,则正实数a的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,则当△AEF的面积最大时,tanθ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(Ⅰ)求证:DE‖平面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一绳子从A点绕三棱锥侧面一圈回到点A的最短距离是
3
,则PA=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,点D,E分别在棱
PB,PC上,且BC∥平面ADE
(I)求证:DE⊥平面PAC;
(Ⅱ)当二面角A-DE-P为直二面角时,求多面体ABCED与PAED的体积比.

查看答案和解析>>

同步练习册答案