精英家教网 > 高中数学 > 题目详情
(2012•湘潭三模)若{an}满足a1=1,an+an+1=(
14
)n
(n∈N*),设Sn=a1+4a2+42a3+…+4n-1an5S2-42a2=
2
2
;类比课本中推导等比数列前n项和公式的方法,可求得5Sn-4nan=
n
n
分析:先对Sn=a1+a2•4+a3•42+…+an•4n-1 两边同乘以4,再相加,求出其和的表达式,整理即可求出5Sn-4nan的表达式.
解答:解:由Sn=a1+a2•4+a3•42+…+an•4n-1 ①
得4•sn=4•a1+a2•42+a3•43+…+an-1•4n-1+an•4n ②
①+②得:5sn=a1+4(a1+a2)+42•(a2+a3)+…+4n-1•(an-1+an)+an•4n
=a1+4×
1
4
+42•(
1
4
2+…+4 n-1•(
1
4
n-1+4n•an
=1+1+1+…+1+4n•an
=n+4n•an
所以5sn-4n•an=n.
5S2-42a2=2;
故答案为2; n
点评:本题主要考查数列的求和,用到了类比法,是一道比较新颖的好题目,关键点在于对课本中推导等比数列前n项和公式的方法的理解和掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湘潭三模)已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湘潭三模)已知函数f(x)=(m+
1
m
)lnx+
1
x
-x
,(其中常数m>0)
(1)当m=2时,求f(x)的极大值;
(2)试讨论f(x)在区间(0,1)上的单调性;
(3)当m∈[3,+∞)时,曲线y=f(x)上总存在相异两点P(x1,f(x1))、Q(x2,f(x2)),使得曲线y=f(x)在点P、Q处的切线互相平行,求x1+x2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湘潭三模)若
x-y≤0
x+y≥0
y≤a
,若z=x+2y的最大值为3,则a的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湘潭三模)已知复数z=
2i
1-i
,则复数z为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湘潭三模)“x>1”是“x2-2x+1>0”的(  )

查看答案和解析>>

同步练习册答案