【题目】已知函数f(x)=x3﹣3x2 . (Ⅰ) 求f(x)的单调区间;
(Ⅱ) 若f(x)的定义域为[﹣1,m]时,值域为[﹣4,0],求m的最大值.
【答案】解:(Ⅰ)f′(x)=3x2﹣6x=3x(x﹣2),
令f′(x)>0,解得:x>2或x<0,
令f′(x)<0,解得:0<x<2,
故f(x)在(﹣∞,0)递增,在(0,2)递减,在(2,+∞)递增;
(Ⅱ)由(Ⅰ)f(﹣1)=﹣4,
故f(m)=m3﹣3m2≤0,解得:m≤3,
故m的最大值是3
【解析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)问题转化为f(m)≤0,求出m的最大值即可.
【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性和函数的最大(小)值与导数的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间
内,(1)如果
,那么函数
在这个区间单调递增;(2)如果
,那么函数
在这个区间单调递减;求函数
在
上的最大值与最小值的步骤:(1)求函数
在
内的极值;(2)将函数
的各极值与端点处的函数值
,
比较,其中最大的是一个最大值,最小的是最小值.
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足:
,anan+1<0(n≥1),数列{bn}满足:bn=an+12﹣an2(n≥1). (Ⅰ)求数列{an},{bn}的通项公式
(Ⅱ)证明:数列{bn}中的任意三项不可能成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的最小正周期为
,且点
是该函数图象的一个最高点.
(1)求函数
的解析式;
(2)若
,求函数
的值域;
(3)把函数
的图象向右平移
个单位长度,得到函数
在
上是单调增函数,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=lnx,g(x)=f(x)+f′(x). (Ⅰ)求g(x)的单调区间和最小值;
(Ⅱ)讨论g(x)与
的大小关系;
(Ⅲ)求a的取值范围,使得g(a)﹣g(x)<
对任意x>0成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法: ①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;
②设有一个回归方程
,变量x增加一个单位时,y平均增加3个单位;
③线性回归方程
必经过点
;
④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据气象中心观察和预测:发生于
地的沙尘暴一直向正南方向移动,其移动速度
与时间
的函数图像如图所示,过线段
上一点
作横轴的垂线
,梯形
在直线
左侧部分的面积即为
内沙尘暴所经过的路程
.
![]()
(1)当
时,求
的值;
(2)将
随
变化的规律用数学关系式表示出来;
(3)若
城位于
地正南方向,且距
地650
,试判断这场沙尘暴是否会侵袭到
城,如果会,在沙尘暴发生后多长时间它将侵袭到
城?如果不会,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体ABCD-A1B1C1D1中,E为AB的中点,F为AA1的中点,求证:
![]()
(1)E、C、D1、F、四点共面;
(2)CE、D1F、DA三线共点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com