精英家教网 > 高中数学 > 题目详情

((本题14分)如图3,四棱锥P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=

  (Ⅰ)求证:MN//平面PAD;

  (Ⅱ)求证:平面PMC⊥平面PCD;

  (Ⅲ)若二面角P—MC—A是60°的二面角,求四棱锥P—ABCD的体积。

 

 

 

 

                                                                

 

 

 

【答案】

 

证明:(Ⅰ)如答图所示,⑴设PD的中点为E,连结AE、NE,

 

 

由N为PD的中点知ENDC,

又ABCD是矩形,∴DCAB,∴ENAB

又M是AB的中点,∴ENAN,                       …3分

∴AMNE是平行四边形

∴MN∥AE,而AE平面PAD,NM平面PAD

∴MN∥平面PAD                                    …4分

(Ⅱ)∵PA=AD,∴AE⊥PD,

又∵PA⊥平面ABCD,CD平面ABCD,

∴CD⊥PA,而CD⊥AD,∴CD⊥平面PAD                                 …6分

∴CD⊥AE, ∵PD∩CD=D,∴AE⊥平面PCD,                          

∵MN∥AE,∴MN⊥平面PCD,又MN平面PMC,

∴平面PMC⊥平面PCD.                                                …8分

 (Ⅲ)解:过A作AH⊥CM,交CM的延长线于H,连PH.

  ∵PA⊥平面ABCD,AH⊥CH,∴PH⊥CH,     ∴∠PHA是二面角P-MC-A的平面角,

∴AH=                                          …   10分

  又∵Rt△MHA∽Rt△MBC,

  

       …12分

                                 …14分

解法二:(Ⅱ)以A为原点,AB,AD,AP所在直线分别为轴、轴、轴建系

设AB=b   (b>0)      面PMC法向量  面PDC法向量

         ∴面PMC面PDC                          …8分

(Ⅲ)面MCA法向量        ∵二面角P—MC—A是60°的二面角

                          ∴        …12分

                      …14分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年浙江卷)(本题14分)如图,矩形和梯形所在平面互相垂直,

(Ⅰ)求证:平面

(Ⅱ)当的长为何值时,二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题14分)如图,分别是正方体

的中点.

(1)求证://平面

(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题14分)

如图,四棱锥中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2,E为PD的中点

(1)求异面直线PA与CE所成角的大小;

(2)(理)求二面角E-AC-D的大小。

    (文)求三棱锥A-CDE的体积。

查看答案和解析>>

科目:高中数学 来源:2014届海南省高二上期末考试文科数学试卷(解析版) 题型:解答题

(本题14分)如图,一水渠的横断面是抛物线形,O是抛物线的顶点,口宽EF=4米,高3米,建立适当的直角坐标系,(1)求抛物线方程.(2)若将水渠横断面改造成等腰梯形ABCD,要求高度不变,只挖土,不填土,求梯形ABCD的下底AB多大时,所挖的土最少?

 

查看答案和解析>>

科目:高中数学 来源:2010届上海市虹口区高三第二次模拟考试数学卷 题型:解答题

(本题14分)

如图,四棱锥中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2,E为PD的中点

(1)求异面直线PA与CE所成角的大小;

(2)(理)求二面角E-AC-D的大小。

    (文)求三棱锥A-CDE的体积。

 

查看答案和解析>>

同步练习册答案