精英家教网 > 高中数学 > 题目详情
求矩阵M=
-14
26
的特征值和特征向量.
分析:利用特征多项式,求特征值,进而可求特征向量.
解答:解:f(λ)=(λ+1)(λ-6)-8=λ2-5λ-14=(λ-7)(λ+2)
由f(λ)=0可得:λ1=7,λ2=-2. (4分)
(7+1)x-4y=0
-2x+(7-6)y=0
,可得
x=1
y=2
,所以属于λ1=7的一个特征向量为
1
2
 (7分)
(2+1)x-4y=0
-2x+(2-6)y=0
,可得
x=4
y=-1
,所以属于λ1=-2的一个特征向量为
4
-1
. (10分)
点评:本题考查特征值与特征向量,解题的关键是确定特征多项式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

A.选修4-1:几何证明选讲
如图,△ABC的外接圆的切线AE与BC的延长线相交于点E,∠BAC的平分线与BC
交于点D.求证:ED2=EB•EC.
B.选修4-2:矩阵与变换
求矩阵M=
-14
26
的特征值和特征向量.
C.选修4-4:坐标系与参数方程
在以O为极点的极坐标系中,直线l与曲线C的极坐标方程分别是ρcos(θ+
π
4
)=
3
2
2
和ρsin2θ=4cosθ,直线l与曲线C交于点.A,B,C,求线段AB的长.
D.选修4-5:不等式选讲
对于实数x,y,若|x-1|≤1,|y-2|≤1,求|x-y+1|的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求矩阵M=
-14
26
的特征值和特征向量.

查看答案和解析>>

同步练习册答案