如图,焦距为
的椭圆
的两个顶点分别为
和
,且
与n
,
共线.![]()
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
有两个不同的交
点
和
,且原点
总在以
为直径的圆的内部,求实数
的取值范围.
(1)
;(2)![]()
解析试题分析:(1)根据椭圆方程写出顶点
的坐标,然后写出
的坐标,利用两向量共线的充要条件:
,得
与
的关系,结合
,解出
与
,求出椭圆的方程;(2)设直线
,与椭圆
有两个不同的交点
和
,设
,将直线方程代入椭圆方程,消去
,得到关于
的方程,由两个不同交点,
,并且得到
与
,
原点
总在以
为直径的圆的内部,
为钝角,即
,整理,代入根与系数的关系,比较
得出
的取值范围.
试题解析:(1)解:设椭圆
的标准方程为![]()
,由已知得
,
,
,
,所以
,
,
因为
与n
,
共线,所以
, 2分
由
,解得
,
,
所以椭圆
的标准方程为
. 4分
(2)解:设
,
,
,
,把直线方程
代入椭圆方程
,
消去
,得
,
所以
,
, 8分
,即
(*) 9分
因为原点
总在以
为直径的圆的内部,
所以
,即
, 10分
又![]()
![]()
,
由![]()
得
, 13分
依题意且满足(*)得
故实数
的取值范围是![]()
![]()
科目:高中数学 来源: 题型:解答题
已知抛物线C:y2=2px(p>0)的焦点为F,抛物线C与直线l1:y=-x的一个交点的横坐标为8.
(1)求抛物线C的方程;
(2)不过原点的直线l2与l1垂直,且与抛物线交于不同的两点A,B,若线段AB的中点为P,且|OP|=|PB|,求△FAB的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
的离心率为
,
轴被曲线
截得的线段长等于
的短轴长。
与
轴的交点为
,过坐标原点
的直线
与
相交于点
,直线
分别与
相交于点
。![]()
(1)求
、
的方程;
(2)求证:
。
(3)记
的面积分别为
,若
,求
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率与双曲线
的离心率互为倒数,直线
与以原点为圆心,以椭圆
的短半轴长为半径的圆相切.
(1)求椭圆
的方程;
(2)设椭圆
的左焦点为
,右焦点为
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,线段
垂直平分线交
于点
,求点
的轨迹
的方程;
(3)设第(2)问中的
与
轴交于点
,不同的两点
在
上,且满足
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,点P(0,-1)是椭圆C1:
=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.![]()
(1)求椭圆C1的方程;
(2)求△ABD面积取最大值时直线l1的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
分别是椭圆
的左,右顶点,点
在椭圆
上,且直线
与直线
的斜率之积为
.![]()
(1)求椭圆
的标准方程;
(2)点
为椭圆
上除长轴端点外的任一点,直线
,
与椭圆的右准线分别交于点
,
.
①在
轴上是否存在一个定点
,使得
?若存在,求点
的坐标;若不存在,说明理由;
②已知常数
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线x2-y2=2若直线n的斜率为2 ,直线n与双曲线相交于A、B两点,线段AB的中点为P,
(1)求点P的坐标(x,y)满足的方程(不要求写出变量的取值范围);
(2)过双曲线的左焦点F1,作倾斜角为
的直线m交双曲线于M、N两点,期中
,F2是双曲线的右焦点,求△F2MN的面积S关于倾斜角
的表达式。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,动点
满足:点
到定点
与到
轴的距离之差为
.记动点
的轨迹为曲线
.
(1)求曲线
的轨迹方程;
(2)过点
的直线交曲线
于
、
两点,过点
和原点
的直线交直线
于点
,求证:直线
平行于
轴.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com