【题目】已知
是偶函数,
.
(1)求
的值,并判断函数
在
上的单调性,说明理由;
(2)设
,若函数
与
的图像有且仅有一个交点,求实数
的取值范围;
(3)定义在
上的一个函数
,如果存在一个常数
,使得式子
对一切大于1的自然数
都成立,则称函数
为“
上的
函数”(其中,
).试判断函数
是否为“
上的
函数”,若是,则求出
的最小值;若不是,则说明理由.(注:
).
【答案】(1)
,递减;理由见解析;(2)
;(3)是,
.
【解析】
(1)由偶函数的定义可得f(﹣x)=f(x),结合对数函数的运算性质,解方程可得所求值;函数h(x)=f(x)
x=log4(4x+1)﹣x在R上递减,运用单调性的定义和对数函数的单调性,即可证明;
(2)由题意可得log4(4x+1)
x=log4(a2x
a)有且只有一个实根,可化为2x+2﹣x=a2x
a,即有a
,化为a﹣1
,运用换元法和对勾函数的单调性,即可得到所求范围.
(3)利用
求解即可
(1)f(x)=log4(4x+1)+kx是偶函数,
可得f(﹣x)=f(x),即log4(4﹣x+1)﹣kx=log4(4x+1)+kx,
即有log4
2kx,可得log44﹣x=﹣x=2kx,
由x∈R,可得k
;
又函数h(x)=f(x)
x=log4(4 x+1)﹣x=
在R上递减,
理由:设x1<x2,则h(x1)﹣h(x2)=log4(
)﹣log4(
)
=log4(4﹣x1+1)﹣log4(4﹣x2+1),
由x1<x2,可得﹣x1>﹣x2,可得log4(4﹣x1+1)>log4(4﹣x2+1),
则h(x1)>
x在R上递减;
(2)g(x)=log4(a2x
a),若函数f(x)与g(x)的图象有且仅有一个交点,
即为log4(4x+1)
x=log4(a2x
a)有且只有一个实根,
可化为2x+2﹣x=a2x
a,
即有a
,化为a﹣1
,
可令t=1
2x(t>1),则2x
,
则a﹣1
,
由9t
34在(1,
)递减,(
,+∞)递增,
可得9t
34的最小值为2
34=﹣4,
当a﹣1=﹣4时,即a=﹣3满足两图象只有一个交点;
当t=1时,9t
34=0,可得a﹣1>0时,即a>1时,两图象只有一个交点,
综上可得a的范围是(1,+∞)∪{﹣3}.
(3)
是
函数,理由如下:由题当任意的
,有
因为
单调递增,则
,故
的最小值为![]()
科目:高中数学 来源: 题型:
【题目】某工厂生产的产品
的直径均位于区间
内(单位:
).若生产一件产品
的直径位于区间
内该厂可获利分别为10,30,20,10(单位:元),现从该厂生产的产品
中随机抽取200件测量它们的直径,得到如图所示的频率分布直方图.
![]()
(1)求
的值,并估计该厂生产一件
产品的平均利润;
(2)现用分层抽样法从直径位于区间
内的产品中随机抽取一个容量为5的样本,从样本中随机抽取两件产品进行检测,求两件产品中至多有一件产品的直径位于区间
内的槪率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示在四棱锥
中,下底面
为正方形,平面
平面
,
为以
为斜边的等腰直角三角形,
,若点
是线段
上的中点.
![]()
(1)证明
平面
.
(2)求二面角
的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面直角坐标系
,直线
过点
,且倾斜角为
,以
为极点,
轴的非负半轴为极轴建立极坐标系,圆
的极坐标方程为
.
(1)求直线
的参数方程和圆
的标准方程;
(2)设直线
与圆
交于
、
两点,若
,求直线
的倾斜角的
值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P到直线y=﹣4的距离比点P到点A(0,1)的距离多3.
(1)求点P的轨迹方程;
(2)经过点Q(0,2)的动直线l与点P的轨交于M,N两点,是否存在定点R使得∠MRQ=∠NRQ?若存在,求出点R的坐标:若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次田径比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示。
![]()
若将运动员按成绩由好到差编为1—35号,再用系统抽样方法从中抽取5人,则其中成绩在区间
上的运动员人数为
A.6B.5C.4D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com