【题目】一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如下表:
![]()
若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”.已知“网购达人”与“网购探者”人数的比例为2:3.
![]()
(1)确定
的值,并补全频率分布直方图;
(2)试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;若平均数和中位数至少有一个不低于2千元,则该网店当日被评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=
-1.其中
>0且
≠1.
(1)求f(2)+f(-2)的值;
(2)求f(x)的解析式;
(3)解关于x的不等式-1<f(x-1)<4.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题
:若关于
的方程
无实数根,则
;命题
:若关于
的方程
有两个不相等的正实数根,则
.
(1)写出命题
的否命题,并判断命题
的真假;
(2)判断命题“
且
”的真假,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
关于
轴对称,顶点在坐标原点
,直线
经过抛物线
的焦点.
(1)求抛物线
的标准方程;
(2)若不经过坐标原点
的直线
与抛物线
相交于不同的两点
,
,且满足
,证明直线
过
轴上一定点
,并求出点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阅读如图所示的程序框图,解答下列问题:
![]()
(1)求输入的
的值分别为
时,输出的
的值;
(2)根据程序框图,写出函数
(
)的解析式;并求当关于
的方程
有三个互不相等的实数解时,实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如下表:
![]()
若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”.已知“网购达人”与“网购探者”人数的比例为2:3.
![]()
(1)确定
的值,并补全频率分布直方图;
(2)试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;若平均数和中位数至少有一个不低于2千元,则该网店当日被评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲袋中有1只黑球,3只红球;乙袋中有2只黑球,1只红球.
(1)从甲袋中任取两球,求取出的两球颜色不相同的概率;
(2)从甲,乙两袋中各取一球,求取出的两球颜色相同的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com