精英家教网 > 高中数学 > 题目详情
(2012•上饶一模)已知函数f(x)=2x+1,g(x)=x,x∈R,数列{an},{bn}满足条件:a1=1,an=f(bn)=g(bn+1),n∈N*
(1)求数列{an},{bn}的通项公式;
(2)令Cn=
2n
anan+1
Tn
是数列{Cn}的前n项和,求使Tn
2011
2012
成立的最小的n值.
分析:(1)由题意得2bn+1=bn+1,两边同加1,可得数列{bn+1}是以1为首项,2为公比的等比数列,从而可求数列的通项;
(2)确定数列{Cn}的通项,利用裂项法求数列的和,利用Tn
2011
2012
,即可求得最小的n值.
解答:解:(1)由题意得2bn+1=bn+1,∴bn+1+1=2bn+2=2(bn+1)…(2分)
又∵a1=2b1+1=1,∴b1=0,b1+1=1≠0…(3分)
故数列{bn+1}是以1为首项,2为公比的等比数列…(4分)
bn+1=2n-1
bn=2n-1-1,an=2bn+1=2n-1…(6分)
(2)由(1)可知 an=2n-1,an+1=2n+1-1
Cn=
2n
(2n-1)(2n+1-1)
=
1
2n-1
-
1
2n+1-1
…(8分)
Tn=C1+C2+…+Cn=(1-
1
3
)+(
1
3
-
1
7
)+…+(
1
2n-1
-
1
2n+1-1
)=1-
1
2n+1-1
…(10分)
Tn
2011
2012
,得2n+1>2013,解得n≥10.
∴满足条件的n的最小值为10.…(12分)
点评:本题考查数列与函数的关系,考查数列递推式,考查裂项法求数列的和,确定数列的通项是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•上饶一模)设点P是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上一点,F1,F2分别是椭圆的左、右焦点,I为△PF1F2的内心,若S△IPF1+S△IPF2=2S△IF1F2,则该椭圆的离心率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上饶一模)关于x的方程:(x2-1)2-|x2-1|+k=0,给出下列四个命题,其中真命题的个数有(  )
(1)存在实数k,使得方程恰有2个不同的实根
(2)存在实数k,使得方程恰有4个不同的实根
(3)存在实数k,使得方程恰有5个不同的实根
(4)存在实数k,使得方程恰有8个不同的实根.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上饶一模)实数x,y满足不等式组
y≥0
x-y≥0
2x-y-2≤0
,则ω=
y-1
x+1
的取值范围是
[-1,
1
3
]
[-1,
1
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上饶一模)f(x)=sin
π
3
x-
3
cos
π
3
x
,则f(1)+f(2)+…+f(2012)=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上饶一模)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=a,E是PC的中点,作EF⊥PB交PB于点F.
(Ⅰ)证明:PA∥平面EDB;
(Ⅱ)求三棱锥P-DEF的体积.

查看答案和解析>>

同步练习册答案