精英家教网 > 高中数学 > 题目详情

【题目】李先生的网店经营坚果类食品,一年中各月份的收入、支出(单位:百元)情况的统计如图所示,下列说法中错误的是(

A. 2至3月份的收入的变化率与11至12月份的收入的变化率相同

B. 支出最高值与支出最低值的比是

C. 第三季度平均收入为5000元

D. 利润最高的月份是2月份

【答案】D

【解析】

通过图表信息直接观察,计算,找出答案即可.

解:A23月份的收入的变化率为201112月份的变化率为20,故相同.A正确.

B,支出最高值是2月份60百元,支出最低值是5月份的10百元,故支出最高值与支出最低值的比是61.故B正确.

C,第三季度的789月每个月的收入分别为40百元,50百元,60百元,故第三季度的平均收入为50百元,故C正确.

D,利润最高的月份是3月份和10月份都是30百元,高于2月份的利润是806020百元,故D错误.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对在直角坐标系的第一象限内的任意两点作如下定义:,那么称点是点的“上位点”,同时点是点的“下位点”.

1)试写出点的一个“上位点”坐标和一个“下位点”坐标;

2)设均为正数,且点是点的上位点,请判断点是否既是点的“下位点”又是点的“上位点”,如果是请证明,如果不是请说明理由;

3)设正整数满足以下条件:对任意实数,总存在,使得点既是点的“下位点”,又是点的“上位点”,求正整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列的公差,项和为,且满足,

1)试寻找一个等差数列和一个非负常数,使得等式对于任意的正整数恒成立,并说明你的理由;

2)对于(1)中的等差数列和非负常数,试求)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为平行四边形,已知.

(1)求证:

(2)若平面平面,且,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABC中,PA⊥底面ABCDAD∥BCAB=AD=AC=3PA=BC=4M为线段AD上一点,AM=2MDNPC的中点.

)证明MN∥平面PAB;

)求直线AN与平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中, 相交于点,点在线段上,,且平面

(1)求实数的值;

(2)若, 求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了解社区群众体育活动的开展情况,拟采用分层抽样的方法从A,B,C三个行政区抽出6个社区进行调查.已知A,B,C行政区中分别有12,18,6个社区.

1)求从A,B,C三个行政区中分别抽取的社区个数;

2)若从抽得的6个社区中随机的抽取2个进行调查结果的对比,求抽取的2个社区中至少有一个来自A行政区的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:

直径

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合计

件数

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

经计算,样本的平均值,标准差,以频率值作为概率的估计值,用样本估计总体.

(1)将直径小于等于或直径大于的零件认为是次品,从设备的生产流水线上随意抽取3个零件,计算其中次品个数的数学期望

(2)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的概率):①;②;③.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备的性能等级并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C,过焦点F的直线l与抛物线C交于MN两点.

1)若直线l的倾斜角为,求的长;

2)设M在准线上的射影为A,求证:AON三点共线(O为坐标原点).

查看答案和解析>>

同步练习册答案