精英家教网 > 高中数学 > 题目详情
设P为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
上除顶点外的任意一点,F1,F2分别为左右点,△F1PF2的内切圆交实轴于点M,则|F1M|•|MF2|值为______.
由已知,得|PF1|-|PF2|=±2a,即|F1M|-|F2M|=±2a.
又|F1M|+|F2M|=2c,
∴|F1M|=c+a或c-a,|F2M|=c-a或c+a.
因此|F1M|•|MF2|=(c+a)(c-a)=c2-a2=b2
故答案为:b2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设Q为双曲线
x2
a2
-
y2
b2
=1上一动点,A(3a,0)为中心,将AQ沿顺时针方向选转
π
2
到AP,求P点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
上的一点,F1、F2分别是双曲线的左、右焦点,则以线段PF2为直径的圆与以双曲线的实轴为直径的圆的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设P为双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的渐近线在第一象限内的部分上一动点,F为双曲线C的右焦点,A为双曲线C的右准线与x轴的交点,e是双曲线C的离心率,则∠APF的最大值为(  )
A、arcsin
1
e
B、arccos
1
e
C、arctan
1
e2-1
D、arccot
e2-1

查看答案和解析>>

科目:高中数学 来源: 题型:

设P为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
上除顶点外的任意一点,F1,F2分别为左右点,△F1PF2的内切圆交实轴于点M,则|F1M|•|MF2|值为
b2
b2

查看答案和解析>>

同步练习册答案