精英家教网 > 高中数学 > 题目详情
已知
m
=(cosx+
3
sinx,1),
n
=(2cosx,-y)
,满足
m
n
=0

(1)将y表示为x的函数f(x),并求f(x)的单调递增区间;
(2)已知△ABC三个内角A、B、C的对边分别为a、b、c,若f(
A
2
)=3
,且a=2,求△ABC面积的最大值.
分析:(1)利用两个向量的数量积公式及三角函数的恒等变换,根据
m
n
=0
求得f(x)=2sin(2x+
π
6
)+1
,令2x+
π
6
∈[2kπ-
π
2
,2kπ+
π
2
]
,求得x的范围,即可求出f(x)的单调递增区间.
(2)由f(
A
2
)=3
求得A=
π
3
,在△ABC中由余弦定理和基本不等式可得bc≤4,再由S△ABC=
1
2
bcsinA
求出它的最大值.
解答:解:(1)∵
m
n
=2cos2x+2
3
sinxcosx-y=
3
sin2x+cos2x+1-y
=2sin(2x+
π
6
)+1-y=0
,所以f(x)=2sin(2x+
π
6
)+1
.…(3分)
2x+
π
6
∈[2kπ-
π
2
,2kπ+
π
2
]
,得x∈[kπ-
π
3
,kπ+
π
6
],(k∈Z)
,故f(x)的单调递增区间是[kπ-
π
3
,kπ+
π
6
],(k∈Z)
.…(6分)
(2)∵f(
A
2
)=2sin(A+
π
6
)+1=3
,∴sin(A+
π
6
)=1
,又A+
π
6
∈(
π
6
6
)
,∴A+
π
6
=
π
2
,∴A=
π
3
.…(8分)
在△ABC中由余弦定理有,a2=b2+c2-2bccosA=b2+c2-bc=4≥2bc-bc=bc,
可知bc≤4(当且仅当b=c时取等号),∴S△ABC=
1
2
bcsinA≤
1
2
•4•
3
2
=
3

即△ABC面积的最大值为
3
.…(12分)
点评:本题主要考查三角函数的恒等变换及化简求值,余弦定理的应用,两个向量的数量积公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
m
=(asinx,cosx),
n
=(sinx,bsinx)
,其中a,b,x∈R.若f(x)=
m
n
满足f(
π
6
)=2
,且f(x)的导函数f'(x)的图象关于直线x=
π
12
对称.
(Ⅰ)求a,b的值;
(Ⅱ)若关于x的方程f(x)+log2k=0在区间[0,
π
2
]
上总有实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程cosx-sinx=m-1无实数解,则实数m的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•深圳二模)已知
m
=(cosx,
3
sinx)
n
=(cosx,cosx)
,设f(x)=
m
n

(1)求函数f(x)的最小正周期及其单调递增区间;
(2)若b、c分别是锐角△ABC的内角B、C的对边,且b•c=
6
-
2
f(A)=
1
2
,试求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
m
=(cosx+
3
sinx,1),
n
=(2cosx,-y)
,满足
m
n
=0

(1)将y表示为x的函数f(x),并求f(x)的单调递增区间;
(2)已知△ABC三个内角A、B、C的对边分别为a、b、c,若f(
A
2
)=3
,且a=2,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案