(本题9分)函数![]()
(Ⅰ)判断并证明
的奇偶性;
(Ⅱ)求证:在定义域内
恒为正。
科目:高中数学 来源: 题型:解答题
(本题满分14分,第1小题6分,第2小题8分)
已知函数
,其中常数a > 0.
(1) 当a = 4时,证明函数f(x)在
上是减函数;
(2) 求函数f(x)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(11分)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为
和
组成数对(
,并构成函数![]()
(Ⅰ)写出所有可能的数对(
,并计算
,且
的概率;
(Ⅱ)求函数
在区间[
上是增函数的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知函数
处取得极值2。
(Ⅰ)
求函数
的表达式;
(Ⅱ)当
满足什么条件时,函数
在区间
上单调递增?
(Ⅲ)若
为
图象上任意一点,直线与
的图象切于点P,求直线的斜率
的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
定义在
上的函数
,对于任意的实数
,恒有
,且当
时,
。
(1)求
及
的值域。
(2)判断
在
上的单调性,并证明。
(3)设
,
,
,求
的范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)已知函数
为奇函数,
为常数,
(1)求实数
的值;
(2)证明:函数
在区间
上单调递增;
(3)若对于区间
上的每一个
值,不等式
恒成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com