精英家教网 > 高中数学 > 题目详情

已知定义在上的单调函数满足:存在实数,使得对于任意实数,总有恒成立,则(i)      (ii)的值为       

 

【答案】

0;1

【解析】

试题分析:由题意对于任意实数x1,x2等式恒成立,故可采用赋值法求解.

(i)令,则f()=f()+f(1)+f(0),故f(1)+f(0)=0;

(ii)令则f(0)=f()+2f(0)所以f(x0)=-f(0)由(i)知f(1)=-f(0)=f(x0)又f(x)为单调函数,所以x0=1故答案为:0,1

考点:抽象函数

点评:本题考查抽象函数的求值问题,一般采用赋值法解决.综合性较强.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+
2
x
+alnx(x>0)

(Ⅰ) 若f(x)在[1,+∞)上单调递增,求a的取值范围;
(Ⅱ)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
)
成立,则称函数y=f(x)为区间D上的“凹函 数”.试证当a≤0时,f(x)为“凹函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的单调递增奇函数以f(x),若当0≤θ≤
π2
时,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+
2
x
+alnx(x>0)

(Ⅰ) 若f(x)在[1,+∞)上单调递增,求a的取值范围;
(Ⅱ)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
)
成立,则称函数y=f(x)为区间D上的“凹函 数”.试证当a≤0时,f(x)为“凹函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在R上的单调递增奇函数以f(x),若当0≤θ≤数学公式时,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年广东省韶关市田家炳中学、乳源高级中学联考高二(下)期中数学试卷(理科)(解析版) 题型:解答题

已知函数
(Ⅰ) 若f(x)在[1,+∞)上单调递增,求a的取值范围;
(Ⅱ)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式成立,则称函数y=f(x)为区间D上的“凹函 数”.试证当a≤0时,f(x)为“凹函数”.

查看答案和解析>>

同步练习册答案