精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)求函数的极值;

(Ⅱ)若实数为整数,且对任意的时,都有恒成立,求实数的最小值.

【答案】(Ⅰ)极大值为,无极小值;(Ⅱ)1.

【解析】

()由题意首先求得导函数的解析式,然后结合导函数的符号讨论原函数的单调性,从而可确定函数的极值;

()结合题意分离参数,然后构造新函数,研究构造的函数,结合零点存在定理找到隐零点的范围,最后利用函数值的范围即可确定整数m的最小值.

()

,则,则

上单调递增,上单调递减,

,无极小值.

(),即上恒成立,

上恒成立,

,则

显然

,则,故上单调递减

由零点定理得,使得,即

时,,则

时,.

上单调递增,在上单调递减

又由,则

∴由恒成立,且为整数,可得的最小值为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某射手每次射击击中目标的概率是,且各次射击的结果互不影响.

(Ⅰ)假设这名射手射击次,求有次连续击中目标,另外次未击中目标的概率;

(Ⅱ)假设这名射手射击次,记随机变量为射手击中目标的次数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年的天猫“双11”交易金额又创新高,达到2684亿元,物流爆增.某机构为了了解网购者对收到快递的满意度进行调查,对某市5000名网购者发出满意度调查评分表,收集并随机抽取了200名网购者的调查评分(评分在70100分之间),其频率分布直方图如图,评分在95分及以上确定为“非常满意”.

1)求的值;

2)以样本的频率作概率,试估计本次调查的网购者中“非常满意”的人数;

3)按分层抽样的方法,从评分在90分及以上的网购者中抽取6人,再从这6人中随机地选取2人,求至少选到一个“非常满意”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:

空调类

冰箱类

小家电类

其它类

营业收入占比

净利润占比

则下列判断中不正确的是( )

A. 该公司2018年度冰箱类电器营销亏损

B. 该公司2018年度小家电类电器营业收入和净利润相同

C. 该公司2018年度净利润主要由空调类电器销售提供

D. 剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与抛物线y2x有一个相同的焦点,且该椭圆的离心率为.

(1)求椭圆的标准方程;

(2)过点P(0,1)的直线与该椭圆交于AB两点,O为坐标原点,若,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是正方形, 平面 分别为 的中点.

1)求证: 平面

2)求平面与平面所成锐二面角的大小;

3)在线段上是否存在一点,使直线与直线所成的角为?若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为椭圆上任意一点,直线与圆交于两点,点为椭圆的左焦点.

(Ⅰ)求椭圆的离心率及左焦点的坐标;

(Ⅱ)求证:直线与椭圆相切;

(Ⅲ)判断是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年2月25日,第届罗马尼亚数学大师赛(简称)于罗马尼亚首都布加勒斯特闭幕,最终成绩揭晓,以色列选手排名第一,而中国队无一人获得金牌,最好成绩是获得银牌的第名,总成绩排名第.而在分量极重的国际数学奥林匹克()比赛中,过去拿冠军拿到手软的中国队,也已经有连续年没有拿到冠军了.人们不禁要问“中国奥数究竟怎么了?”,一时间关于各级教育主管部门是否应该下达“禁奥令”成为社会热点.某重点高中培优班共人,现就这人“禁奥令”的态度进行问卷调查,得到如下的列联表:

不应下“禁奥令”

应下“禁奥令”

合计

男生

5

女生

10

合计

50

若采用分层抽样的方法从人中抽出人进行重点调查,知道其中认为不应下“禁奥令”的同学共有人.

(1)请将上面的列联表补充完整,并判断是否有的把握认为对下“禁奥令”的态度与性别有关?请说明你的理由;

(2)现从这人中抽出名男生、名女生,记此人中认为不应下“禁奥令”的人数为,求的分布列和数学期望.

参考公式与数据:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCDA1B1C1D1 的棱长为 2,且AC BD 交于点OE 为棱DD1 中点,以A 为原点,建立空间直角坐标系Axyz,如图所示.

(Ⅰ)求证:B1O平面EAC

(Ⅱ)若点F EA 上且B1FAE,试求点F 的坐标;

(Ⅲ)求二面角B1EAC 的正弦值.

查看答案和解析>>

同步练习册答案