(12分)已知椭圆
的中心在原点,焦点在
轴上,点
、
分别是椭圆的左、右焦点,在椭圆
的右准线上的点
,满足线段
的中垂线过点
.直线
:
为动直线,且直线
与椭圆
交于不同的两点
、
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若在椭圆
上存在点
,满足
(
为坐标原点),
求实数
的取值范围;
(Ⅲ)在(Ⅱ)的条件下,当
取何值时,
的面积最大,并求出这个最大值.
(Ⅰ)所求椭圆方程为
。
(Ⅱ)实数
的取值范围是
.
(Ⅲ)当
时,
的面积最大,最大值为
.
【解析】解:(Ⅰ)设椭圆
的方程为
,半焦距为
,依题意有
解得
.
所求椭圆方程为
. ……………………………3分
(Ⅱ)由
,得
.
设点
、
的坐标分别为
、
,则
……4分
.
(1)当
时,点
、
关于原点对称,则
.
(2)当
时,点
、
不关于原点对称,则
,
由
,得
即![]()
点
在椭圆上,
有
,
将①、②两式,得
.
,
,则
且
.
综合(1)、(2)两种情况,得实数
的取值范围是
.
………………9分
【注】 此题可根据图形得出当
时
,当
、
两点重合时
.
如果学生由此得出
的取值范围是
可酌情给分.
(Ⅲ)
,点
到直线
的距离
,
的面积![]()
![]()
.
………………………… 10分
由①有
,代入上式并化简,得
.
,
.
……………………… 11分
当且仅当
,即
时,等号成立.
当
时,
的面积最大,最大值为
.
……………………… 12分
科目:高中数学 来源: 题型:
| ||
| 2 |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 25 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com