精英家教网 > 高中数学 > 题目详情

【题目】已知是定义域上的单调递增函数

(1)求证:命题“设,若,则”是真命题

(2)解关于的不等式

【答案】(1)证明见解析.

(2)见解析.

【解析】分析:(1)利用原命题与原命题的逆否命题是等价命题,只需根据函数的单调性证明”即可;(2)利用(1)原不等式等价于以,即,分类讨论指数函数的单调性,即可得到不等式的解集.

详解:(1)原命题与原命题的逆否命题是等价命题

原命题的逆否命题:设“设,若,则

下面证明原命题的逆否命题是真命题:

因为得:

是定义域上的单调递增函数

所以

同理有

由①+②得:

所以原命题的逆否命题是真命题

所以原命题是真命题

(2)易证时,

由不等式

所以,即

①当时,即时,不等式的解集为

②当时,即时,不等式的解集为

③当时,即时,不等式的解集为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是定义域为的奇函数.

(1)求实数的值并判断函数的单调性;

(2)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解甲、乙两奶粉厂的产品质量,采用分层抽样的方法从甲、乙两奶粉厂生产的产品中分别抽取16件和5件,测量产品中微量元素的含量(单位:毫克).下表是乙厂的5件产品的测量数据:

编号

1

2

3

4

5

170

178

166

176

180

74

80

77

76

81

(1)已知甲厂生产的产品共有96件,求乙厂生产的产品数量;

(2)当产品中的微量元素满足时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量;

(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及其均值(即数学期望).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱中,底面是等腰梯形, ,,是线段的中点,平面.

(1)求证:平面

(2)若,求平面和平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各名,将男性、女性使用微信的时间分成组:,,,,分别加以统计,得到如图所示的频率分布直方图.

(1)根据女性频率分布直方图估计女性使用微信的平均时间;

(2)若每天玩微信超过小时的用户列为微信控,否则称其为非微信控,请你根据已知条件完成的列联表,并判断是否有的把握认为微信控性别有关?

参考公式:,其中

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,点Q在棱AB上.

(1)证明:平面.

(2)若三棱锥的体积为,求点B到平面PDQ的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称函数上的有界函数,其中称为函数的上界.已知函数.

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界的有界函数,求实数的取值范围;

(3)若,函数上的上界是,求的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某技术公司新开发了A,B两种新产品,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种产品各100件进行检测,检测结果统计如下:

测试指标

[70,76)

[76,82)

[82,88)

[88,94)

[94,100]

产品A

8

12

40

32

8

产品B

7

18

40

29

6


(1)试分别估计产品A,产品B为正品的概率;
(2)生产一件产品A,若是正品可盈利80元,次品则亏损10元;生产一件产品B,若是正品可盈利100元,次品则亏损20元;在(1)的前提下.记X为生产一件产品A和一件产品B所得的总利润,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,设a∈R,若关于x的不等式f(x)≥| +a|在R上恒成立,则a的取值范围是(  )
A.[﹣ ,2]
B.[﹣ ]
C.[﹣2 ,2]
D.[﹣2 ]

查看答案和解析>>

同步练习册答案