精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)在定义域[-1,1]上是奇函数,又是减函数.
(1)证明:对任意的x1,x2∈[-1,1],有[f(x1)+f(x2)](x1+x2)≤0
(2)解不等式f(1-a)+f(1-a2)<0.
分析:(1)分类讨论,分x1+x2=0、若x1+x2<0、x1+x2>0 三种情况,证明(x1+x2)与[f(x1)+f(x2)]符号相反.
(2)利用函数的定义域和单调性列出不等式组,求出解集.
解答:解:(1)若x1+x2=0,显然不等式成立;
若x1+x2<0,则-1<x1<-x2<1,∵函数y=f(x)在定义域[-1,1]上是奇函数,又是减函数,
∴f(x1)>f(-x2)=-f(x2),f(x1)+f(x2)>0,故原不等式成立;
同理可证当x1+x2>0  时,原不等式也成立.
(2)由f(1-a)+f(1-a2)<0 和已知可得以下不等式组
-1≤1-a2≤1
-1≤a-1≤1
1-a2>a-1
解得 0≤a<1.
点评:本题综合考查函数的定义域、单调性和奇偶性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案