精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆 =1(a>b>0),F1 , F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.

(1)若∠F1AB=90°,求椭圆的离心率;
(2)若椭圆的焦距为2,且 =2 ,求椭圆的方程.

【答案】
(1)解:若∠F1AB=90°,则△AOF2为等腰直角三角形.则|OA|=|OF2|,即b=c.

∴a= = c,

椭圆的离心率e= =


(2)由题知2c=2,c=1,则A(0,b),F2(1,0),设B(x,y),

=2 ,即(1,﹣b)=2(x﹣1,y),

,解得x= ,y=﹣

代入椭圆 =1,即 解得a2=3.b2=a2﹣c2=2,

∴椭圆方程为


【解析】(1)若∠F1AB=90°,则△AOF2为等腰直角三角形.即b=c.则可求出e的值。
(2)有题目可知A(0,b),F2(1,0),设B(x,y)。由可得B点坐标,代入椭圆方程即可。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设z1 , z2是复数,则下列命题中的假命题是(
A.若|z1﹣z2|=0,则 =
B.若z1= ,则 =z2
C.若|z1|=|z2|,则z1? =z2?
D.若|z1|=|z2|,则z12=z22

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】
(1)设函数 ,求 的最大值;
(2)试判断方程 内存在根的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生.

(1)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3);
(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.
甲的频数统计表(部分)

运行
次数n

输出y的值
为1的频数

输出y的值
为2的频数

输出y的值
为3的频数

30

14

6

10

2100

1027

376

697

乙的频数统计表(部分)

运行
次数n

输出y的值
为1的频数

输出y的值
为2的频数

输出y的值
为3的频数

30

12

11

7

2100

1051

696

353

当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P(x0 , y0)(x0≠±a)是双曲线E: 上一点,M,N分别是双曲线E的左右顶点,直线PM,PN的斜率之积为
(1)求双曲线的离心率;
(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足 ,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 (a>b>0)与直线x+y=1交于P、Q两点,且OP⊥OQ,其中O为坐标原点.
(1)求 的值;
(2)若椭圆的离心率e满足 ≤e≤ ,求椭圆长轴的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分设各项均为正数的等比数列

1求数列的通项公式;

2求证:

3是否存在正整数使得对任意正整数均成立?若存在求出的最大值若不存在说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三角形两边长分别为,第三边上的中线长为,则三角形的外接圆半径为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 中,角 的对边分别为 ,且 .
(1)求 Δ A B C 的面积;
(2)求 Δ A B C 中最大角的余弦值.

查看答案和解析>>

同步练习册答案