精英家教网 > 高中数学 > 题目详情
设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,离心率为
1
2
,左焦点F1到直线l:x-
3
y-3=0
的距离等于长半轴长.
(I)求椭圆C的方程;
(II)过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,线段MN的中垂线与x轴相交于点P(m,O),求实数m的取值范围.
(I)由已知
c
a
=
1
2
,可得F1(-
1
2
a,0),
由F1到直线l的距离为a,所以
|-
1
2
a-3|
2
=a

解得a=2,所以c=1,b2=a2-c2=3,得b=
3

所以所求椭圆C的方程为
x2
4
+
y2
3
=1

(II)由(I)知F2(1,0),设直线l的方程为:y=k(x-1),
y=k(x-1)
x2
4
+
y2
3
=1
消去y得(3+4k2)x2-8k2x+4k2-12=0,
因为l过点F2,所以△>0恒成立,
设M(x1,y1),N(x2,y2),
x1+x2=
8k2
3+4k2
,y1+y2=k(x1+x2-2)=
-6k
3+4k2

所以MN中点(
4k2
3+4k2
-3k
3+4k2
),
当k=0时,MN为长轴,中点为原点,则m=0,
当k≠0时MN中垂线方程为y+
3k
3+4k2
=-
1
k
(x-
4k2
3+4k2
)

令y=0,得m=
k2
3+4k2
=
1
3
k2
+4

因为
3
k2
>0
,所以
1
k2
+4>4
,可得0<m<
1
4

综上可知实数m的取值范围是[0,
1
4
).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>1)右焦点为F,它与直线l:y=k(x+1)相交于P、Q两点,l与x轴的交点M到椭圆左准线的距离为d,若椭圆的焦距是b与d+|MF|的等差中项.
(1)求椭圆离心率e;
(2)设N与M关于原点O对称,若以N为圆心,b为半径的圆与l相切,且
OP
OQ
=-
5
3
求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左.右焦点分别为F1F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2
F1F2
+
F2Q
=
0

(1)若过A.Q.F2三点的圆恰好与直线l:x-
3
y-3=0相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M.N两点.试证明:
1
|F2M|
+
1
|F2N|
为定值;②在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城一模)设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
恒过定点A(1,2),则椭圆的中心到准线的距离的最小值
5
+2
5
+2

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1
(a,b>0)的左、右焦点分别为F1,F2,若P 是椭圆上的一点,|
PF1
|+|
PF2
|=4
,离心率e=
3
2

(1)求椭圆C的方程;
(2)若P 是第一象限内该椭圆上的一点,
PF1
PF2
=-
5
4
,求点P的坐标;
(3)设过定点P(0,2)的直线与椭圆交于不同的两点A,B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左,右焦点分别为F1,F2,离心率为e=
2
2
,以F1为圆心,|F1F2|为半径的圆与直线x-
3
y-3=0
相切.
(I)求椭圆C的方程;
(II)直线y=x交椭圆C于A、B两点,D为椭圆上异于A、B的点,求△ABD面积的最大值.

查看答案和解析>>

同步练习册答案