【题目】给出下列命题:
①
,不等式
恒成立;
②若
,则
;
③“若
且
,则
”的逆否命题;
④若命题
,命题
,则命题
是真命题.
其中,真命题为( )
A.①③④B.①②C.①②③D.②③④
【答案】C
【解析】
对于①中不等式可表示为
得结论;对于②根据基本不等式的适用条件,结合
与
互为倒数,是同号的两个数,可得
,可得结论;对于③根据逆否命题与原命题同真同假,直接判断原命题的真假即可,然后利用不等式的基本性质,可以证出原命题为真命题;对于④可以分别证出命题
和命题
都是真命题,从而得到题
是假命题.
对于①,不等式
整理,得原不等式等价于
,
∵![]()
∴原不等式恒成立,故①正确;
对于②,因为
,两个数互为倒数,
所以
与
同号,当
时,
可得
与
都为正数,
根据基本不等式,有
,
此时有
且
,
∴
,故②正确;
对于③,命题“若
且
,则
”的逆否命题与原命题同真同假,
因此判断原命题的真假性即可,
若
,两边都除以
,得
…(),
又因为
,将()两边都乘以
,得
,
所以原命题是真命题,故③是真命题,正确;
对于④,∵
对任意的
均成立,
∴命题
”是真命题,
∵存在
,使得
,
∴命题
是真命题,
∴命题
是假命题,
∵命题“
”当中有一个真命题,另一个是假命题
∴“
”是假命题,故④不正确,
综上所述,真命题有三个:①②③,
故选:C.
科目:高中数学 来源: 题型:
【题目】若函数
定义域为
,且对任意实数
,有
,则称
为“
形函数”,若函数
定义域为
,函数
对任意
恒成立,且对任意实数
,有
,则称为“对数
形函数” .
(1)试判断函数
是否为“
形函数”,并说明理由;
(2)若
是“对数
形函数”,求实数
的取值范围;
(3)若
是“
形函数”,且满足对任意
,有
,问
是否为“对数
形函数”?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】春节过后,某市教育局从全市高中生中抽去了100人,调查了他们的压岁钱收入情况,按照金额(单位:百元)分成了以下几组:
,
,
,
,
,
.统计结果如下表所示:
![]()
该市高中生压岁钱收入
可以认为服从正态分布
,用样本平均数
(每组数据取区间的中点值)作为
的估计值.
(1)求样本平均数
;
(2)求
;
(3)某文化公司赞助了市教育局的这次社会调查活动,并针对该市的高中生制定了赠送“读书卡”的活动,赠送方式为:压岁钱低于
的获赠两次读书卡,压岁钱不低于
的获赠一次读书卡.已知每次赠送的读书卡张数及对应的概率如下表所示:
![]()
现从该市高中生中随机抽取一人,记
(单位:张)为该名高中生获赠的读书卡的张数,求
的分布列及数学期望.
参考数据:若
,则
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,已知圆
的参数方程为
(
为参数,
).以原点
为极点,
轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线
的极坐标方程是
.
(1)若直线
与圆
有公共点,试求实数
的取值范围;
(2)当
时,过点
且与直线
平行的直线
交圆
于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国有一道古典数学名著——两鼠穿墙:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”题意是:“有两只老鼠从墙的两边打洞穿墙(连线与墙面垂直),大老鼠第一天进一尺,以后每天加倍,小老鼠第一天也进一尺,以后每天减半,那么两鼠第几天能见面.”假设墙厚16尺,如图是源于该题思想的一个程序框图,则输出的
( )
![]()
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
的标准方程为
,圆心为
,直线
的方程为
,点
在直线
上,过
点作圆
的切线
,
,切点分别为
,
.
(1)若
,试求点
的坐标;
(2)若
点的坐标为
,过
作直线与圆
交于
两点,当
时,求直线
的方程;
(3)求证:经过
,
,
三点的圆必过定点,并求出所有定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面积S=5
,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从数列
中取出部分项组成的数列称为数列
的“子数列”.
(1)若等差数列
的公差
,其子数列
恰为等比数列,其中
,
,
,求
;
(2)若
,
,判断数列
是否为
的“子数列”,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com