【题目】如图,A、B是海岸线OM、ON上两个码头,海中小岛有码头Q到海岸线OM、ON的距离分别为
、
,测得
,
,以点O为坐标原点,射线OM为x轴的正半轴,建立如图所示的直角坐标系,一艘游轮以
小时的平均速度在水上旅游线AB航行(将航线AB看作直线,码头Q在第一象限,航线BB经过点Q).
![]()
(1)问游轮自码头A沿
方向开往码头B共需多少分钟?
(2)海中有一处景点P(设点P在
平面内,
,且
),游轮无法靠近,求游轮在水上旅游线AB航行时离景点P最近的点C的坐标.
科目:高中数学 来源: 题型:
【题目】狄利克雷函数为F(x)
.有下列四个命题:①此函数为偶函数,且有无数条对称轴;②此函数的值域是
;③此函数为周期函数,但没有最小正周期;④存在三点
,使得△ABC是等腰直角三角形,以上命题正确的是( )
A.①②B.①③C.③④D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
在区间
上有最大值4,最小值1,设函数
.
(1)求
、
的值及函数
的解析式;
(2)若不等式
在
时恒成立,求实数
的取值范围;
(3)如果关于
的方程
有三个相异的实数根,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司要在一条笔直的道路边安装路灯,要求灯柱AB与底面垂直,灯杆BC与灯柱AB所在的平面与道路走向垂直,路灯C采用锥形灯罩,射出的管线与平面ABC部分截面如图中阴影所示,
路宽AD=24米,设![]()
![]()
(1)求灯柱AB的高h(用
表示);
(2)此公司应该如何设置
的值才能使制作路灯灯柱AB和灯杆BC所用材料的总长度最小?最小值为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.设数列
的前n项和为
且满足![]()
(1)求数列
的通项公式;
(2)若
求正整数
的值;
(3)是否存在正整数
,使得
恰好为数列
的一项?若存在,求出所有满足条件的正整数
;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,小凳凳面为圆形,凳脚为三根细钢管.考虑到钢管的受力等因素,设计的小凳应满足:三根细钢管相交处的节点
与凳面圆形的圆心
的连线垂直于凳面和地面,且
分细钢管上下两段的比值为
,三只凳脚与地面所成的角均为
.若
、
、
是凳面圆周的三等分点,
厘米,求凳子的高度
及三根细钢管的总长度(精确到
).
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
是双曲线
的一条渐近线,点
在双曲线C上,设坐标原点为O.
(1)求双曲线C的方程;
(2)若过点
的直线l与双曲线C交于R、S两点,若
,求直线l的方程;
(3)设
在双曲线上,且直线AM与y轴相交于点P,点M关于y轴对称的点为N,直线AN与y轴相交于点Q,问:在x轴上是否存在定点T,使得
?若存在,求出点T的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园种植桃树,已知角A为
的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.
![]()
(1)若围墙AP,AQ总长度为200米,如何围可使得三角形地块APQ的面积最大?
(2)已知AP段围墙高1米,AQ段围墙高1.5米,造价均为每平方米100元.若围围墙用了20000元,问如何围可使竹篱笆用料最省?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,已知曲线
的方程为
,曲线
的方程为
.以极点
为原点,极轴为
轴正半轴建立直角坐标系
.
(1)求曲线
,
的直角坐标方程;
(2)若曲线
与
轴相交于点
,与曲线
相交于
,
两点,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com