【题目】已知向量
=(cosωx﹣sinωx,sinωx),
=(﹣cosωx﹣sinωx,2
cosωx),设函数f(x)=
+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(
,1)
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点(
,0)求函数f(x)在区间[0,
]上的取值范围.
【答案】
(1)解:∵f(x)=
+λ=(cosωx﹣sinωx)×(﹣cosωx﹣sinωx)+sinωx×2
cosωx+λ
=﹣(cos2ωx﹣sin2ωx)+
sin2ωx+λ
=
sin2ωx﹣cos2ωx+λ=2sin(2ωx﹣
)+λ
∵图象关于直线x=π对称,∴2πω﹣
=
+kπ,k∈z
∴ω=
+
,又ω∈(
,1)
∴k=1时,ω= ![]()
∴函数f(x)的最小正周期为
= ![]()
(2)解:∵f(
)=0
∴2sin(2×
×
﹣
)+λ=0
∴λ=﹣ ![]()
∴f(x)=2sin(
x﹣
)﹣ ![]()
由x∈[0,
]
∴
x﹣
∈[﹣
,
]
∴sin(
x﹣
)∈[﹣
,1]
∴2sin(
x﹣
)﹣
=f(x)∈[﹣1﹣
,2﹣
]
故函数f(x)在区间[0,
]上的取值范围为[﹣1﹣
,2﹣
]
【解析】(1)先利用向量数量积运算性质,求函数f(x)的解析式,再利用二倍角公式和两角差的余弦公式将函数f(x)化为y=Asin(ωx+φ)+k型函数,最后利用函数的对称性和ω的范围,计算ω的值,从而得函数的最小正周期;(2)先将已知点的坐标代入函数解析式,求得λ的值,再求内层函数的值域,最后将内层函数看做整体,利用正弦函数的图象和性质即可求得函数f(x)的值域.
科目:高中数学 来源: 题型:
【题目】关于函数f(x)=sin(x﹣
)sin(x+
),有下列命题:
①此函数可以化为f(x)=﹣
sin(2x+
);
②函数f(x)的最小正周期是π,其图象的一个对称中心是(
, 0);
③函数f(x)的最小值为﹣
, 其图象的一条对称轴是x=
;
④函数f(x)的图象向右平移
个单位后得到的函数是偶函数;
⑤函数f(x)在区间(﹣
, 0)上是减函数.
其中所有正确的命题的序号个数是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)=cos(ωx+φ)(ω>0,|φ|<
)的图象上的每一点的纵坐标不变,横坐标缩短为原来的一半,再将图象向右平移
个单位长度得到函数y=sinx的图象.
(1)直接写出f(x)的表达式,并求出f(x)在[0,π]上的值域;
(2)求出f(x)在[0,π]上的单调区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校团委组织了“文明出行,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(单位:分)整理后,得到如下频率分布直方图(其中分组区间为
,
,…,
).
![]()
(1)求成绩在
的频率,并补全此频率分布直方图;
(2)求这次考试平均分的估计值;
(3)若从成绩在
和
的学生中任选两人,求他们的成绩在同一分组区间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4x+a2x+3,a∈R
(1)当a=﹣4时,且x∈[0,2],求函数f(x)的值域;
(2)若f(x)>0在(0,+∞)对任意的实数x恒成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com