【题目】如图,四棱锥
中,
平面
,
,
.
,
,
,
是
的中点.
![]()
(Ⅰ)证明:
⊥平面
;
(Ⅱ)若二面角
的余弦值是
,求
的值;
(Ⅲ)若
,在线段
上是否存在一点
,使得
⊥
. 若存在,确定
点的位置;若不存在,说明理由.
【答案】(Ⅰ)见解析 (Ⅱ)
. (Ⅲ)不存在,见解析
【解析】
(I)通过证明
,证得
平面
.
(II)建立空间直角坐标系,利用二面角
的余弦值列方程,解方程求得
的值.
(III)设出
点的坐标,利用
列方程,推出矛盾,由此判断满足条件的
点不存在.
(Ⅰ)证明:因为
平面
,
,
所以
平面
.
又因为
平面
,所以
. 在
中,
,
是
的中点,
所以
.
又因为
,所以
平面
.
(Ⅱ)解:因为
平面
,
所以
,
.
又因为
,
所以 如图建立空间直角坐标系
.
![]()
则
,
,
,
,
,
,
,
.
设平面
的法向量为
.
则
即
令
,则
,
,
于是
.
因为
平面
,所以
. 又
,
所以
平面
.
又因为
,
所以 取平面
的法向量为
.
所以
,
即
,解得
.
又因为
,所以
.
(Ⅲ)结论:不存在.理由如下:
证明:设![]()
.
当
时,
.
,
.
由
知,
,
,
.这与
矛盾.
所以,在线段
上不存在点
,使得
.
科目:高中数学 来源: 题型:
【题目】为了解某班学生喜好体育运动是否与性别有关,对本班60人进行了问卷调查得到了如下的列联表:
喜好体育运动 | 不喜好体育运动 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 60 |
已知按喜好体育运动与否,采用分层抽样法抽取容量为12的样本,则抽到喜好体育运动的人数为7.
(1)请将上面的列联表补充完整;
(2)能否在犯错误的概率不超过0.001的前提下认为喜好体育运动与性别有关?说明你的理由;
下面的临界值表供参考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:
,其中
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥
中,
底面
,
,
,
,
.
![]()
(1)当
变化时,点
到平面
的距离是否为定值?若是,请求出该定值;若不是,请说明理由;
(2)当直线
与平面
所成的角为45°时,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列
满足:对任意两个正整数![]()
,
与
至少有一个成立,则称这个数列为“和谐数列”.
(Ⅰ)求证:若数列
为等差数列,则
为“和谐数列”;
(Ⅱ)求证:若数列
为“和谐数列”,则数列
从第
项起为等差数列;
(Ⅲ)若
是各项均为整数的“和谐数列”,满足
,且存在
使得
,
,求p的所有可能值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件
,用随机模拟的方法估计事件
发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:
232 | 321 | 230 | 023 | 123 | 021 | 132 | 220 | 001 |
231 | 130 | 133 | 231 | 031 | 320 | 122 | 103 | 233 |
由此可以估计事件
发生的概率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com