精英家教网 > 高中数学 > 题目详情

F1F2是双曲线x2y2=4的左、右两个焦点,P是双曲线上任意一点,过F1作∠F1PF2的平分线的垂线,垂足为M,求点M的轨迹方程.

x2+y2=4.


解析:

如图,F1(-2,0)、F2(2,0)、M(x,y),

延长F1MPF2相交于点N,设N(x0,y0).

由已知可得MF1N的中点,

又|NF2|=|PN|-|PF2|=|PF1|-|PF2|=2a=4,

∴(x0-2)2+y02=16.

∴(2x+2-2)2+(2y)2=16.∴x2+y2=4.

评注:适当运用平面几何知识把条件进行转化,会给我们解题带来方便.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的两个焦点,点P在双曲线上,若
PF1
PF2
=0 且|
PF1
||
PF2
|=2ac(c=
a2+b2
),则双曲线的离心率为(  )
A、
1+
5
2
B、
1+
3
2
C、2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宝山区模拟)双曲线C:
x2
a2
-
y2
b2
=1
上一点(2,
3
)
到左,右两焦点距离的差为2.
(1)求双曲线的方程;
(2)设F1,F2是双曲线的左右焦点,P是双曲线上的点,若|PF1|+|PF2|=6,求△PF1F2的面积;
(3)过(-2,0)作直线l交双曲线C于A,B两点,若
OP
=
OA
+
OB
,是否存在这样的直线l,使OAPB为矩形?若存在,求出l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2是双曲线x2-
y224
=1
的两个焦点,是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于
24
24

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)设F1,F2是双曲线
x2
3
-y2=1
的两个焦点,P在双曲线上,当△F1PF2的面积为2时,
PF1
PF2
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右两个焦点,若双曲线右支上存在一点P,使(
OP
+
OF2
)•
F2P
=0
(O为坐标原点),且tan∠PF2F1=2,则双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案