已知函数
在
处取得极值.
(1)讨论
和
是函数
的极大值还是极小值;
(2)过点
作曲线
的切线,求此切线方程.[
(1)(-1)=2是极大值,ƒ(1)=-2是极小值;(2)
.
【解析】本试题主要是考查了导数在研究函数最值的运用以及导数几何意义的运用。
解:(1)ƒ′(x)=3ax2+2bx-3,依题意,ƒ′(1)= ƒ′(-1)=0,即
3a+2b-3=0,3a-2b-3=0.解得a=1, b=0.
∴ƒ(x)=x3-3x,ƒ′(x)=3x2-3=3(x+1)(x-1).
令ƒ′(x)=0,得x1=-1,x2=1.
若x∈(-∞,-1)∪(1,+∞),则ƒ′(x)>0,故ƒ(x)在(-∞,-1),(1,+∞)上是增函数.
若x∈(-1,1),则ƒ′(x)<0,故ƒ(x)在(-1,1)上是减函数.
所以ƒ(-1)=2是极大值,ƒ(1)=-2是极小值.
![]()
科目:高中数学 来源:2013届度江西南昌二中高二下学期期末理科数学试卷(解析版) 题型:解答题
(本题12分)已知函数
在
处取得极值.
(1) 求
;
(2 )设函数
,如果
在开区间
上存在极小值,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年贵州省毕节市高三上学期第三次月考理科数学试卷 题型:解答题
已知函数
=
在
处取得极值.
(1)求实数
的值;
(2) 若关于
的方程
在
上恰有两个不相等的实数根,求实数
的取值范围;
查看答案和解析>>
科目:高中数学 来源:2011-2012学年湖南省高三第一次月考理科数学试卷 题型:解答题
(本小题满分14分) 已知函数
在
处取得极值。
(Ⅰ)求函数
的解析式;
(Ⅱ)求证:对于区间
上任意两个自变量的值
,都有
;
(Ⅲ)若过点
可作曲线
的三条切线,求实数
的取值范围。
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广西柳铁一中高三第三次月考文科数学试卷 题型:解答题
设函数
为实数。
(Ⅰ)已知函数
在
处取得极值,求
的值;
(Ⅱ)已知不等式
对任意
都成立,求实数
的取值范围。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年甘肃省高三第二阶段考试数学理卷 题型:解答题
(12分)已知函数
在
处取得极值.
(Ⅰ)求实数
的值;[来源:学+科+网]
(Ⅱ)若关于
的方程
在区间
上恰有两个不同的实数根,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com