精英家教网 > 高中数学 > 题目详情
有一化肥厂生产甲、乙两种混合肥料.生产1车皮甲种肥料或1车皮乙种肥料需要的主要原料和产生的利润分别:磷酸盐2 t,硝酸盐9 t,利润8000元或磷酸盐2 t,硝酸盐5 t,利润6000元.

工厂现有库存磷酸盐20 t,硝酸盐70 t,应生产甲、乙肥料各多少车皮可获得最大利润?

解:设xy分别表示计划生产甲、乙两种肥料的车皮数.

由题意,得

工厂的总利润z=8000x+6000y.

当直线8000x+6000yz=0过点(5,5)时,z取得最大值,即生产甲、乙两种肥料各5车皮时可获得最大利润.

练习册系列答案
相关习题

科目:高中数学 来源:高中数学全解题库(国标苏教版·必修4、必修5) 苏教版 题型:044

有一化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料或1车皮乙种肥料需要的主要生产原料和产生的利润分别为磷酸盐4 t,硝酸盐18 t,利润10 000元或磷酸盐1 t,硝酸盐15 t,利润5 000元.工厂现有库存磷酸盐10 t,硝酸盐66 t,应生产甲、乙肥料各多少车皮可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

有一化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料或1车皮乙种肥料需要的主要生产原料和产生的利润分别为:磷酸盐4 t、硝酸盐18 t,利润10 000元或磷酸盐1 t、硝酸盐15 t,利润5 000元,工厂现有库存磷酸盐10 t、硝酸盐66 t,应生产甲、乙肥料各多少车皮可获得最大利润?

查看答案和解析>>

同步练习册答案