【题目】(2017·郑州第二次质量预测)如图,高为1的等腰梯形ABCD中,AM=CD=AB=1.现将△AMD沿MD折起,使平面AMD⊥平面MBCD,连接AB,AC.
(1)在AB边上是否存在点P,使AD∥平面MPC?
(2)当点P为AB边的中点时,求点B到平面MPC的距离.
【答案】(1)见解析(2)
【解析】试题分析:(1) 连接BD交MC于点N,则,因此AP=AB ,再根据线面平行判定定理得结论(2)利用等体积法 ,再根据AM⊥平面MBCD,得,最后计算三角形面积代入可得结果
试题解析:解:(1)当AP=AB时,有AD∥平面MPC.
理由如下:
连接BD交MC于点N,连接NP.
在梯形MBCD中,DC∥MB,==,
在△ADB中,=,∴AD∥PN.
∵AD平面MPC,PN平面MPC,
∴AD∥平面MPC.
(2)∵平面AMD⊥平面MBCD,平面AMD∩平面MBCD=DM,AM⊥DM,∴AM⊥平面MBCD.
∴VPMBC=×S△MBC×=××2×1×=.
在△MPC中,MP=AB=,MC=,
又PC==,
∴S△MPC=××=.
∴点B到平面MPC的距离为
d===.
科目:高中数学 来源: 题型:
【题目】质检部门对某工厂甲、乙两个车间生产的12个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过20克的为合格.
(1)从甲、乙两车间分别随机抽取2个零件,求甲车间至少一个零件合格且乙车间至少一个零件合格的概率;
(2)质检部门从甲车间8个零件中随机抽取4件进行检测,若至少2件合格,检测即可通过,若至少3 件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;
(3)若从甲、乙两车间12个零件中随机抽取2个零件,用表示乙车间的零件个数,求的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: (a﹥b﹥0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设不过原点O且斜率为的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:|MA|·|MB|=|MC|·|MD|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·石家庄一模)祖暅是南北朝时期的伟大数学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体,图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为( )
A. ①② B. ①③
C. ②④ D. ①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=AB=2,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体DABC.
(1)求证:AD⊥平面BCD;
(2)求三棱锥CABD的高.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的焦点的坐标为, 的坐标为,且经过点, 轴.
(1)求椭圆的方程;
(2)设过的直线与椭圆交于两不同点,在椭圆上是否存在一点,使四边形为平行四边形?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,圆的圆心坐标为,半径为2.以极点为原点,极轴为的正半轴,取相同的长度单位建立平面直角坐标系,直线的参数方程为(为参数).
(1)求圆的极坐标方程;
(2)设与圆的交点为, 与轴的交点为,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com