【题目】已知函数f(x),g(x)满足关系g(x)=f(x)f(x+α),其中α是常数.
(1)设f(x)=cosx+sinx,
,求g(x)的解析式;
(2)设计一个函数f(x)及一个α的值,使得
;
(3)当f(x)=|sinx|+cosx,
时,存在x1,x2∈R,对任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,求|x1-x2|的最小值.
【答案】(1)
(2)f(x)=2cosx,α=-
(3)![]()
【解析】
(1)求出f(x+α),代入g(x)=f(x)f(x+α)化简得出.
(2)对g(x)化简得
=4cosxcos(x-
),故f(x)=2cosx,α=-
.
(3)求出g(x)的解析式,由题意得g(x1)为最小值,g(x2)为最大值,求出x1,x2,从而得到|x1-x2|的最小值.
(1)∵f(x)=cosx+sinx,
∴f(x+α)=cos(x+
)+sin(x+
)=cosx-sinx;
∴g(x)=(cosx+sinx)(cosx-sinx)=cos2x-sin2x=cos2x.
(2)∵
=4cosxcos(x-
),
∴f(x)=2cosx,α=-
.
(3)∵f(x)=|sinx|+cosx,∴g(x)=f(x)f(x+α)=(|sinx|+cosx)(|cosx|-sinx)
=
,
因为存在x1,x2∈R,对任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,
所以当x1=2kπ+π或
时,g(x)≥g(x1)=-1
当
时,g(x)≤g(x2)=2
所以![]()
或![]()
所以|x1-x2|的最小值是
.
科目:高中数学 来源: 题型:
【题目】
两地相距
千米,汽车从
地匀速行驶到
地,速度不超过
千米小时,已知汽车每小时的运输成本(单位:元)由可变部分和固定部分两部分组成:可变部分与速度
的平方成正比,比例系数为
,固定部分为
元,
(1)把全程运输成本
(元)表示为速度
(千米小时)的函效:并求出当
时,汽车应以多大速度行驶,才能使得全程运输成本最小;
(2)随着汽车的折旧,运输成本会发生一些变化,那么当
,此时汽车的速度应调整为多大,才会使得运输成本最小,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等比数列{an}的各项均为正数,且2a1+3a2=1,
=9a2a6.
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+…+log3an,求数列
的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为
.(12分)
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lg(ax-bx),(a>1>b>0).
(1)求f(x)的定义域;
(2)若f(x)在(1,+∞)上递增且恒取正值,求a,b满足的关系式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
,函数
,
是函数
的导函数,
是自然对数的底数.
(1)当
时,求导函数
的最小值;
(2)若不等式
对任意
恒成立,求实数
的最大值;
(3)若函数
存在极大值与极小值,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com