精英家教网 > 高中数学 > 题目详情
设f(x)在(0,+∞)上是单调递增函数,当n∈N*时,f(n)∈N*,且f[f(n)]=2n+1,则(  )
分析:利用函数单调递增及n∈N*时,f(n)∈N*,对选项进行筛选可求得答案.
解答:解:由f[f(n)]=2n+1,令n=1,2得:f[f(1)]=3,f[f(2)]=5.
∵当n∈N*时,f(n)∈N*
若f(1)=3,则由f[f(1)]=3得:f(3)=3,与单调递增矛盾,故选项A错;
若f(2)=4,f(4)=5,则4<f(3)<5,与f(3)∈N*矛盾,故选项C错;
若f(2)=3,则由f[f(2)]=5得f(3)=5,故选项D错;
事实上,若f(1)=1,则由f[f(1)]=3得:f(1)=3,矛盾;
若f(1)=m,m≥3,m∈N*,则f(m)=3,于是f(1)=m≥3=f(m),
这与f(x)在(0,+∞)上单调递增矛盾,
∴必有f(1)=2,故f(2)=3.
故选B.
点评:本题考查函数的单调性,本题运用了筛选法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=xsinx(x∈R).
(Ⅰ)证明f(x+2kπ)-f(x)=2kπsinx,其中为k为整数;
(Ⅱ)设x0为f(x)的一个极值点,证明[f(x0)]2=
x04
1+x02

(Ⅲ)设f(x)在(0,+∞)内的全部极值点按从小到大的顺序排列a1,a2,…,an,…,
证明
π
2
<an+1-an<π(n=1,2,…).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•杨浦区二模)(理)已知向量
a
=(x2+1,-x)
b
=(1,2
n2+1
)
(n为正整数),函数f(x)=
• 
,设f(x)在(0,+∞)上取最小值时的自变量x取值为an
(1)求数列{an}的通项公式;
(2)已知数列{bn},对任意正整数n,都有bn•(4an2-5)=1成立,设Sn为数列{bn}的前n项和,求
lim
n→∞
Sn

(3)在点列A1(1,a1)、A2(2,a2)、A3(3,a3)、…、An(n,an)、…中是否存在两点Ai,Aj(i,j为正整数)使直线AiAj的斜率为1?若存在,则求出所有的数对(i,j);若不存在,请你写出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•杨浦区二模)(文)已知向量
a
=(x2+1,-x)
b
=(1,2
n2+1
)
(n为正整数),函数f(x)=
• 
,设f(x)在(0,+∞)上取最小值时的自变量x取值为an
(1)求数列{an}的通项公式;
(2)已知数列{bn},其中bn=an+12-an2,设Sn为数列{bn}的前n项和,求
lim
n→∞
Sn
C
2
n

(3)已知点列A1(1,a12)、A2(2,a22)、A3(3,a32)、…、An(n,an2)、…,设过任意两点Ai,Aj(i,j为正整数)的直线斜率为kij,当i=2008,j=2010时,求直线AiAj的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数f(x)=x2-a|x|+2a-3.
(1)若a=2,作函数f(x)的图象,写出单调增区间;
(2)若函数f(x)在区间[1,2]上是增函数,求实数a的取值范围;
(3)设f(x)在区间[0,2]上的最小值为g(a),求g(a)的表达式.

查看答案和解析>>

同步练习册答案